19 research outputs found

    Russian Émigré Artists Boris Grigoriev and Grigory Musatov and 1920s-1930s Prague: Between “Russian Exoticism” and Western Modernism

    Full text link
    Статья посвящена пражскому контексту творчества и чешским связям русских художников-эмигрантов Бориса Григорьева (1886-1939) и Григория Мусатова (1889-1941) в 1920-1930-е гг. Живший в Париже с 1920 г. Борис Григорьев Прагу посетил лишь один раз, но состоявшаяся в 1926 г. его персональная выставка стала одним из самых заметных художественных событий 1920-х гг. в столице Чехословакии. Для Григория Мусатова Прага, напротив, стала местом его постоянного обитания, где он смог интегрироваться в местный художественный процесс. Мастеров разных судеб связывали близость эстетики и направление творческой эволюции: своеобразный «русский экзотизм» в творчестве 1920-х гг., отмечавшийся чешскими и европейскими критиками, а также движение к интернациональным мотивам и модернистским художественным решениям в 1930-е гг

    Purinergic Signaling in Pathologic Osteogenic Differentiation of Aortic Valve Interstitial Cells from Patients with Aortic Valve Calcification

    No full text
    Purinergic signaling is associated with a vast spectrum of physiological processes, including cardiovascular system function and, in particular, its pathological calcifications, such as aortic valve stenosis. Aortic valve stenosis (AS) is a degenerative disease for which there is no cure other than surgical replacement of the affected valve. Purinergic signaling is known to be involved in the pathologic osteogenic differentiation of valve interstitial cells (VIC) into osteoblast-like cells, which underlies the pathogenesis of AS. ATP, its metabolites and related nucleotides also act as signaling molecules in normal osteogenic differentiation, which is observed in pro-osteoblasts and leads to bone tissue development. We show that stenotic and non-stenotic valve interstitial cells significantly differ from each other, especially under osteogenic stimuli. In osteogenic conditions, the expression of the ecto-nucleotidases ENTPD1 and ENPP1, as well as ADORA2b, is increased in AS VICs compared to normal VICs. In addition, AS VICs after osteogenic stimulation look more similar to osteoblasts than non-stenotic VICs in terms of purinergic signaling, which suggests the stronger osteogenic differentiation potential of AS VICs. Thus, purinergic signaling is impaired in stenotic aortic valves and might be used as a potential target in the search for an anti-calcification therapy

    Purinergic Signaling in Pathologic Osteogenic Differentiation of Aortic Valve Interstitial Cells from Patients with Aortic Valve Calcification

    No full text
    Purinergic signaling is associated with a vast spectrum of physiological processes, including cardiovascular system function and, in particular, its pathological calcifications, such as aortic valve stenosis. Aortic valve stenosis (AS) is a degenerative disease for which there is no cure other than surgical replacement of the affected valve. Purinergic signaling is known to be involved in the pathologic osteogenic differentiation of valve interstitial cells (VIC) into osteoblast-like cells, which underlies the pathogenesis of AS. ATP, its metabolites and related nucleotides also act as signaling molecules in normal osteogenic differentiation, which is observed in pro-osteoblasts and leads to bone tissue development. We show that stenotic and non-stenotic valve interstitial cells significantly differ from each other, especially under osteogenic stimuli. In osteogenic conditions, the expression of the ecto-nucleotidases ENTPD1 and ENPP1, as well as ADORA2b, is increased in AS VICs compared to normal VICs. In addition, AS VICs after osteogenic stimulation look more similar to osteoblasts than non-stenotic VICs in terms of purinergic signaling, which suggests the stronger osteogenic differentiation potential of AS VICs. Thus, purinergic signaling is impaired in stenotic aortic valves and might be used as a potential target in the search for an anti-calcification therapy

    Mechanisms of Smooth Muscle Cell Differentiation Are Distinctly Altered in Thoracic Aortic Aneurysms Associated with Bicuspid or Tricuspid Aortic Valves

    No full text
    Cellular and molecular mechanisms of thoracic aortic aneurysm are not clear and therapeutic approaches are mostly absent. Thoracic aortic aneurysm is associated with defective differentiation of smooth muscle cells (SMC) of aortic wall. Bicuspid aortic valve (BAV) comparing to tricuspid aortic valve (TAV) significantly predisposes to a risk of thoracic aortic aneurysms. It has been suggested recently that BAV-associated aortopathies represent a separate pathology comparing to TAV-associated dilations. The only proven candidate gene that has been associated with BAV remains NOTCH1. In this study we tested the hypothesis that Notch-dependent and related TGF-β and BMP differentiation pathways are differently altered in aortic SMC of BAV- vs. TAV-associated aortic aneurysms. SMC were isolated from aortic tissues of the patients with BAV- or TAV-associated aortic aneurysms and from healthy donors used as controls. Gene expression was verified by qPCR and Western blotting. For TGF-β induced differentiation SMC were treated with the medium containing TGF-β1. To induce proosteogenic signaling we cultured SMC in the presence of specific osteogenic factors. Notch-dependent differentiation was induced via lentiviral transduction of SMC with activated Notch1 domain. MYOCD expression, a master gene of SMC differentiation, was down regulated in SMC of both BAV and TAV patients. Discriminant analysis of gene expression patterns included a set of contractile genes specific for SMC, Notch-related genes and proosteogenic genes and revealed that control cells form a separate cluster from both BAV and TAV group, while BAV- and TAV-derived SMC are partially distinct with some overlapping. In differentiation experiments TGF-β caused similar patterns of target gene expression for BAV- and TAV derived cells while the induction was higher in the diseased cells than in control ones. Osteogenic induction caused significant change in RUNX2 expression exclusively in BAV group. Notch activation induced significant ACTA2 expression also exclusively in BAV group. We show that Notch acts synergistically with proosteogenic factors to induce ACTA2 transcription and osteogenic differentiation. In conclusion we have found differences in responsiveness of SMC to Notch and to proosteogenic induction between BAV- and TAV-associated aortic aneurysms

    Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    No full text
    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis
    corecore