6 research outputs found

    First Principles Assessment of CdTe as a Tunnel Barrier at the α\mathbf{\alpha}-Sn/InSb Interface

    Full text link
    Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β\beta-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α\alpha-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 6, 180 (2020)]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α\alpha-Sn and CdTe. For CdTe, the z-unfolding method [Advanced Quantum Technologies, 5, 2100033 (2022)] is used to resolve the contributions of different kzk_z values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α\alpha-Sn, InSb/CdTe, and CdTe/α\alpha-Sn, as well as in tri-layer interfaces of InSb/CdTe/α\alpha-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α\alpha-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments

    Scale-dependent optimized homoepitaxy of InAs(111)A

    Full text link
    We combined in-situ scanning tunneling microscopy (STM) with the conventional growth characterization methods of atomic force microscopy (AFM) and reflection high energy electron diffraction (RHEED) to simultaneously assess atomic-scale impurities and the larger-scale surface morphology of molecular beam epitaxy (MBE) grown homoepitaxial InAs(111)A. By keeping a constant substrate temperature and indium flux while increasing the As2_2 flux, we find two differing MBE growth parameter regions for optimized surface roughness on the macro and atomic scale. In particular, we show that a pure step-flow regime with strong suppression of hillock formation can be achieved, even on substrates without intentional offcut. On the other hand, an indium adatom deficient, low atomic defect surface can be observed for a high hillock density. We identify the main remaining point defect on the latter surface by comparison to STM simulations. Furthermore, we provide a method for extracting root-mean-square surface roughness values and discuss their use for surface quality optimization by comparison to scale-dependent, technologically relevant surface metrics. Finally, mapping the separately optimized regions of the growth parameter space should provide a guide for future device engineering involving epitaxial InAs(111)A growth

    First Principles Assessment of CdTe as a Tunnel Barrier at the α\mathbf{\alpha}-Sn/InSb Interface

    No full text
    Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β\beta-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor's local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α\alpha-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 6, 180 (2020)]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α\alpha-Sn and CdTe. For CdTe, the z-unfolding method [Advanced Quantum Technologies, 5, 2100033 (2022)] is used to resolve the contributions of different kzk_z values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α\alpha-Sn, InSb/CdTe, and CdTe/α\alpha-Sn, as well as in tri-layer interfaces of InSb/CdTe/α\alpha-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α\alpha-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor-superconductor devices in future Majorana zero modes experiments

    First-Principles Assessment of CdTe as a Tunnel Barrier at the α‑Sn/InSb Interface

    No full text
    Majorana zero modes, with prospective applications in topological quantum computing, are expected to arise in superconductor/semiconductor interfaces, such as β-Sn and InSb. However, proximity to the superconductor may also adversely affect the semiconductor’s local properties. A tunnel barrier inserted at the interface could resolve this issue. We assess the wide band gap semiconductor, CdTe, as a candidate material to mediate the coupling at the lattice-matched interface between α-Sn and InSb. To this end, we use density functional theory (DFT) with Hubbard U corrections, whose values are machine-learned via Bayesian optimization (BO) [npj Computational Materials 2020, 6, 180]. The results of DFT+U(BO) are validated against angle resolved photoemission spectroscopy (ARPES) experiments for α-Sn and CdTe. For CdTe, the z-unfolding method [Advanced Quantum Technologies 2022, 5, 2100033] is used to resolve the contributions of different kz values to the ARPES. We then study the band offsets and the penetration depth of metal-induced gap states (MIGS) in bilayer interfaces of InSb/α-Sn, InSb/CdTe, and CdTe/α-Sn, as well as in trilayer interfaces of InSb/CdTe/α-Sn with increasing thickness of CdTe. We find that 16 atomic layers (3.5 nm) of CdTe can serve as a tunnel barrier, effectively shielding the InSb from MIGS from the α-Sn. This may guide the choice of dimensions of the CdTe barrier to mediate the coupling in semiconductor–superconductor devices in future Majorana zero modes experiments
    corecore