35 research outputs found

    An environment for relation mining over richly annotated corpora: the case of GENIA

    Get PDF
    BACKGROUND: The biomedical domain is witnessing a rapid growth of the amount of published scientific results, which makes it increasingly difficult to filter the core information. There is a real need for support tools that 'digest' the published results and extract the most important information. RESULTS: We describe and evaluate an environment supporting the extraction of domain-specific relations, such as protein-protein interactions, from a richly-annotated corpus. We use full, deep-linguistic parsing and manually created, versatile patterns, expressing a large set of syntactic alternations, plus semantic ontology information. CONCLUSION: The experiments show that our approach described is capable of delivering high-precision results, while maintaining sufficient levels of recall. The high level of abstraction of the rules used by the system, which are considerably more powerful and versatile than finite-state approaches, allows speedy interactive development and validation

    GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomedical researchers often want to explore pathogenesis and pathways regulated by abnormally expressed genes, such as those identified by microarray analyses. Literature mining is an important way to assist in this task. Many literature mining tools are now available. However, few of them allows the user to make manual adjustments to zero in on what he/she wants to know in particular.</p> <p>Results</p> <p>We present our software program, GenCLiP (Gene Cluster with Literature Profiles), which is based on the methods presented by Chaussabel and Sher (<it>Genome Biol </it>2002, 3(10):RESEARCH0055) that search gene lists to identify functional clusters of genes based on up-to-date literature profiling. Four features were added to this previously described method: the ability to 1) manually curate keywords extracted from the literature, 2) search genes and gene co-occurrence networks related to custom keywords, 3) compare analyzed gene results with negative and positive controls generated by GenCLiP, and 4) calculate probabilities that the resulting genes and gene networks are randomly related. In this paper, we show with a set of differentially expressed genes between keloids and normal control, how implementation of functions in GenCLiP successfully identified keywords related to the pathogenesis of keloids and unknown gene pathways involved in the pathogenesis of keloids.</p> <p>Conclusion</p> <p>With regard to the identification of disease-susceptibility genes, GenCLiP allows one to quickly acquire a primary pathogenesis profile and identify pathways involving abnormally expressed genes not previously associated with the disease.</p

    BioInfer: a corpus for information extraction in the biomedical domain

    Get PDF
    BACKGROUND: Lately, there has been a great interest in the application of information extraction methods to the biomedical domain, in particular, to the extraction of relationships of genes, proteins, and RNA from scientific publications. The development and evaluation of such methods requires annotated domain corpora. RESULTS: We present BioInfer (Bio Information Extraction Resource), a new public resource providing an annotated corpus of biomedical English. We describe an annotation scheme capturing named entities and their relationships along with a dependency analysis of sentence syntax. We further present ontologies defining the types of entities and relationships annotated in the corpus. Currently, the corpus contains 1100 sentences from abstracts of biomedical research articles annotated for relationships, named entities, as well as syntactic dependencies. Supporting software is provided with the corpus. The corpus is unique in the domain in combining these annotation types for a single set of sentences, and in the level of detail of the relationship annotation. CONCLUSION: We introduce a corpus targeted at protein, gene, and RNA relationships which serves as a resource for the development of information extraction systems and their components such as parsers and domain analyzers. The corpus will be maintained and further developed with a current version being available at

    Text-derived concept profiles support assessment of DNA microarray data for acute myeloid leukemia and for androgen receptor stimulation

    Get PDF
    BACKGROUND: High-throughput experiments, such as with DNA microarrays, typically result in hundreds of genes potentially relevant to the process under study, rendering the interpretation of these experiments problematic. Here, we propose and evaluate an approach to find functional associations between large numbers of genes and other biomedical concepts from free-text literature. For each gene, a profile of related concepts is constructed that summarizes the context in which the gene is mentioned in literature. We assign a weight to each concept in the profile based on a likelihood ratio measure. Gene concept profiles can then be clustered to find related genes and other concepts. RESULTS: The experimental validation was done in two steps. We first applied our method on a controlled test set. After this proved to be successful the datasets from two DNA microarray experiments were analyzed in the same way and the results were evaluated by domain experts. The first dataset was a gene-expression profile that characterizes the cancer cells of a group of acute myeloid leukemia patients. For this group of patients the biological background of the cancer cells is largely unknown. Using our methodology we found an association of these cells to monocytes, which agreed with other experimental evidence. The second data set consisted of differentially expressed genes following androgen receptor stimulation in a prostate cancer cell line. Based on the analysis we put forward a hypothesis about the biological processes induced in these studied cells: secretory lysosomes are involved in the production of prostatic fluid and their development and/or secretion are androgen-regulated processes. CONCLUSION: Our method can be used to analyze DNA microarray datasets based on information explicitly and implicitly available in the literature. We provide a publicly available tool, dubbed Anni, for this purpose

    Extracting causal relations on HIV drug resistance from literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and medical doctors. Therefore there is an urgent need for a tool that partially automates this process and is able to retrieve relations between drugs and virus mutations from literature.</p> <p>Results</p> <p>In this work we present a novel method to extract and combine relationships between HIV drugs and mutations in viral genomes. Our extraction method is based on natural language processing (NLP) which produces grammatical relations and applies a set of rules to these relations. We applied our method to a relevant set of PubMed abstracts and obtained 2,434 extracted relations with an estimated performance of 84% for F-score. We then combined the extracted relations using logistic regression to generate resistance values for each <drug, mutation> pair. The results of this relation combination show more than 85% agreement with the Stanford HIVDB for the ten most frequently occurring mutations. The system is used in 5 hospitals from the Virolab project <url>http://www.virolab.org</url> to preselect the most relevant novel resistance data from literature and present those to virologists and medical doctors for further evaluation.</p> <p>Conclusions</p> <p>The proposed relation extraction and combination method has a good performance on extracting HIV drug resistance data. It can be used in large-scale relation extraction experiments. The developed methods can also be applied to extract other type of relations such as gene-protein, gene-disease, and disease-mutation.</p

    Mining phenotypes for gene function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health and disease of organisms are reflected in their phenotypes. Often, a genetic component to a disease is discovered only after clearly defining its phenotype. In the past years, many technologies to systematically generate phenotypes in a high-throughput manner, such as RNA interference or gene knock-out, have been developed and used to decipher functions for genes. However, there have been relatively few efforts to make use of phenotype data beyond the single genotype-phenotype relationships.</p> <p>Results</p> <p>We present results on a study where we use a large set of phenotype data – in textual form – to predict gene annotation. To this end, we use text clustering to group genes based on their phenotype descriptions. We show that these clusters correlate well with several indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. We exploit these clusters for predicting gene function by carrying over annotations from well-annotated genes to other, less-characterized genes in the same cluster. For a subset of groups selected by applying objective criteria, we can predict GO-term annotations from the biological process sub-ontology with up to 72.6% precision and 16.7% recall, as evaluated by cross-validation. We manually verified some of these clusters and found them to exhibit high biological coherence, e.g. a group containing all available antennal Drosophila odorant receptors despite inconsistent GO-annotations.</p> <p>Conclusion</p> <p>The intrinsic nature of phenotypes to visibly reflect genetic activity underlines their usefulness in inferring new gene functions. Thus, systematically analyzing these data on a large scale offers many possibilities for inferring functional annotation of genes. We show that text clustering can play an important role in this process.</p

    Corpus annotation for mining biomedical events from literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation.</p> <p>Results</p> <p>We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation.</p> <p>Conclusion</p> <p>The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain.</p

    Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    Get PDF
    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes

    Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    Get PDF
    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data

    An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    Get PDF
    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella
    corecore