21 research outputs found

    High throughput sequencing in mice: a platform comparison identifies a preponderance of cryptic SNPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allelic variation is the cornerstone of genetically determined differences in gene expression, gene product structure, physiology, and behavior. However, allelic variation, particularly cryptic (unknown or not annotated) variation, is problematic for follow up analyses. Polymorphisms result in a high incidence of false positive and false negative results in hybridization based analyses and hinder the identification of the true variation underlying genetically determined differences in physiology and behavior. Given the proliferation of mouse genetic models (e.g., knockout models, selectively bred lines, heterogeneous stocks derived from standard inbred strains and wild mice) and the wealth of gene expression microarray and phenotypic studies using genetic models, the impact of naturally-occurring polymorphisms on these data is critical. With the advent of next-generation, high-throughput sequencing, we are now in a position to determine to what extent polymorphisms are currently cryptic in such models and their impact on downstream analyses.</p> <p>Results</p> <p>We sequenced the two most commonly used inbred mouse strains, DBA/2J and C57BL/6J, across a region of chromosome 1 (171.6 – 174.6 megabases) using two next generation high-throughput sequencing platforms: Applied Biosystems (SOLiD) and Illumina (Genome Analyzer). Using the same templates on both platforms, we compared realignments and single nucleotide polymorphism (SNP) detection with an 80 fold average read depth across platforms and samples. While public datasets currently annotate 4,527 SNPs between the two strains in this interval, thorough high-throughput sequencing identified a total of 11,824 SNPs in the interval, including 7,663 new SNPs. Furthermore, we confirmed 40 missense SNPs and discovered 36 new missense SNPs.</p> <p>Conclusion</p> <p>Comparisons utilizing even two of the best characterized mouse genetic models, DBA/2J and C57BL/6J, indicate that more than half of naturally-occurring SNPs remain cryptic. The magnitude of this problem is compounded when using more divergent or poorly annotated genetic models. This warrants full genomic sequencing of the mouse strains used as genetic models.</p

    Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse

    No full text
    Abstract Background The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA). Results Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented. Conclusions Despite the marked differences in genetic diversity, the transcriptome structure was remarkably similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.</p

    Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    Get PDF
    <div><p>We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F<sub>2</sub> intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.</p> </div

    Image_3_Brain gene expression differences related to ethanol preference in the collaborative cross founder strains.JPEG

    No full text
    The collaborative cross (CC) founder strains include five classical inbred laboratory strains [129S1/SvlmJ (S129), A/J (AJ), C57BL/6J (B6), NOD/ShiLtJ (NOD), and NZO/HILtJ (NZO)] and three wild-derived strains [CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB)]. These strains encompass 89% of the genetic diversity available in Mus musculus and ∼10–20 times more genetic diversity than found in Homo sapiens. For more than 60 years the B6 strain has been widely used as a genetic model for high ethanol preference and consumption. However, another of the CC founder strains, PWK, has been identified as a high ethanol preference/high consumption strain. The current study determined how the transcriptomes of the B6 and PWK strains differed from the 6 low preference CC strains across 3 nodes of the brain addiction circuit. RNA-Seq data were collected from the central nucleus of the amygdala (CeA), the nucleus accumbens core (NAcc) and the prelimbic cortex (PrL). Differential expression (DE) analysis was performed in each of these brain regions for all 28 possible pairwise comparisons of the CC founder strains. Unique genes for each strain were identified by selecting for genes that differed significantly [false discovery rate (FDR) < 0.05] from all other strains in the same direction. B6 was identified as the most distinct classical inbred laboratory strain, having the highest number of total differently expressed genes (DEGs) and DEGs with high log fold change, and unique genes compared to other CC strains. Less than 50 unique DEGs were identified in common between B6 and PWK within all three brain regions, indicating the strains potentially represent two distinct genetic signatures for risk for high ethanol-preference. 338 DEGs were found to be commonly different between B6, PWK and the average expression of the remaining CC strains within all three regions. The commonly different up-expressed genes were significantly enriched (FDR < 0.001) among genes associated with neuroimmune function. These data compliment findings showing that neuroimmune signaling is key to understanding alcohol use disorder (AUD) and support use of these 8 strains and the highly heterogeneous mouse populations derived from them to identify alcohol-related brain mechanisms and treatment targets.</p

    Data_Sheet_1_Brain gene expression differences related to ethanol preference in the collaborative cross founder strains.xlsx

    No full text
    The collaborative cross (CC) founder strains include five classical inbred laboratory strains [129S1/SvlmJ (S129), A/J (AJ), C57BL/6J (B6), NOD/ShiLtJ (NOD), and NZO/HILtJ (NZO)] and three wild-derived strains [CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB)]. These strains encompass 89% of the genetic diversity available in Mus musculus and ∼10–20 times more genetic diversity than found in Homo sapiens. For more than 60 years the B6 strain has been widely used as a genetic model for high ethanol preference and consumption. However, another of the CC founder strains, PWK, has been identified as a high ethanol preference/high consumption strain. The current study determined how the transcriptomes of the B6 and PWK strains differed from the 6 low preference CC strains across 3 nodes of the brain addiction circuit. RNA-Seq data were collected from the central nucleus of the amygdala (CeA), the nucleus accumbens core (NAcc) and the prelimbic cortex (PrL). Differential expression (DE) analysis was performed in each of these brain regions for all 28 possible pairwise comparisons of the CC founder strains. Unique genes for each strain were identified by selecting for genes that differed significantly [false discovery rate (FDR) < 0.05] from all other strains in the same direction. B6 was identified as the most distinct classical inbred laboratory strain, having the highest number of total differently expressed genes (DEGs) and DEGs with high log fold change, and unique genes compared to other CC strains. Less than 50 unique DEGs were identified in common between B6 and PWK within all three brain regions, indicating the strains potentially represent two distinct genetic signatures for risk for high ethanol-preference. 338 DEGs were found to be commonly different between B6, PWK and the average expression of the remaining CC strains within all three regions. The commonly different up-expressed genes were significantly enriched (FDR < 0.001) among genes associated with neuroimmune function. These data compliment findings showing that neuroimmune signaling is key to understanding alcohol use disorder (AUD) and support use of these 8 strains and the highly heterogeneous mouse populations derived from them to identify alcohol-related brain mechanisms and treatment targets.</p

    Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders

    No full text
    The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with selective breeding, can be used to detect new pathways and mechanisms associated with ethanol preference and excessive ethanol consumption. We predicted that these pathways would provide new targets for therapeutic manipulation. Previously (Colville et al., 2017), we observed that preference selection strongly affected the accumbens shell (SH) genes associated with synaptic function and in particular genes associated with synaptic tethering. Here we expand our analyses to include substantially larger sample sizes and samples from two additional components of the “addiction circuit,” the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of differential expression (DE), the majority of affected genes are region-specific; only in the CeA did the DE genes show a significant enrichment in GO annotation categories, e.g., neuron part. In all three brain regions the differentially variable genes were significantly enriched in a single network module characterized by genes associated with cell-to-cell signaling. The data point to glutamate plasticity as being a key feature of selection for ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93 appears to have a key role. It was also observed that the expression of the clustered protocadherins was strongly associated with preference selection

    Image_4_Brain gene expression differences related to ethanol preference in the collaborative cross founder strains.JPEG

    No full text
    The collaborative cross (CC) founder strains include five classical inbred laboratory strains [129S1/SvlmJ (S129), A/J (AJ), C57BL/6J (B6), NOD/ShiLtJ (NOD), and NZO/HILtJ (NZO)] and three wild-derived strains [CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB)]. These strains encompass 89% of the genetic diversity available in Mus musculus and ∼10–20 times more genetic diversity than found in Homo sapiens. For more than 60 years the B6 strain has been widely used as a genetic model for high ethanol preference and consumption. However, another of the CC founder strains, PWK, has been identified as a high ethanol preference/high consumption strain. The current study determined how the transcriptomes of the B6 and PWK strains differed from the 6 low preference CC strains across 3 nodes of the brain addiction circuit. RNA-Seq data were collected from the central nucleus of the amygdala (CeA), the nucleus accumbens core (NAcc) and the prelimbic cortex (PrL). Differential expression (DE) analysis was performed in each of these brain regions for all 28 possible pairwise comparisons of the CC founder strains. Unique genes for each strain were identified by selecting for genes that differed significantly [false discovery rate (FDR) < 0.05] from all other strains in the same direction. B6 was identified as the most distinct classical inbred laboratory strain, having the highest number of total differently expressed genes (DEGs) and DEGs with high log fold change, and unique genes compared to other CC strains. Less than 50 unique DEGs were identified in common between B6 and PWK within all three brain regions, indicating the strains potentially represent two distinct genetic signatures for risk for high ethanol-preference. 338 DEGs were found to be commonly different between B6, PWK and the average expression of the remaining CC strains within all three regions. The commonly different up-expressed genes were significantly enriched (FDR < 0.001) among genes associated with neuroimmune function. These data compliment findings showing that neuroimmune signaling is key to understanding alcohol use disorder (AUD) and support use of these 8 strains and the highly heterogeneous mouse populations derived from them to identify alcohol-related brain mechanisms and treatment targets.</p
    corecore