22 research outputs found

    Keggin-Type Catalysts Partially Oxidize 2-Methyl-1,3- Propanediol to Methacrylic Acid in a Micro-Fluidized Bed Reactor

    Get PDF
    RÉSUMÉ Le mĂ©thacrylate de mĂ©thyle est le monomĂšre du polymĂ©thacrylate de mĂ©thyle. Ce dernier, commercialisĂ© sous les noms de marques AcryliteÂź, PlexiglasÂź, LuciteÂź, OptixÂź, PerspexÂź, OroglasÂź, CyroliteÂź, SumipexÂź et AltuglasÂź, a diverses applications industrielles dans les peintures et revĂȘtements ou l’électronique, comme modificateur pour le PVC, ou pour les implants osseux Nagai (2001); Godfrey (1963); Kung (1994); W. Dormer et al. (1998); Smith et al. (1999). La demande en MMA dĂ©passera les 4.8 millions de tonnes d’ici Ă  2020 Global Market Analysts (2016). La rĂ©gion Asie–Pacifique est son principal marchĂ©, elle inclut notamment la Chine, son premier producteur et consommateur mondial. L’AmĂ©rique du Nord et l’Europe se classent deuxiĂšme et troisiĂšme, respectivement, tandis que le Moyen–Orient, l’Afrique, et l’AmĂ©rique Latine reprĂ©sentent les marchĂ©s en plus forte croissance Global Market Analysts (2016). Le PMMA (produit Ă  partir de MMA) dĂ©passera lui les 2.8 millions de tonne en demande annuelle. Mitsubishi Rayon a ainsi rapportĂ© une croissance de la demande de plus de 0.2 millions de tonnes en rythme annuel (5% to 6%) Nagai et Ui (2004); Program (2006); Schunk et Brem (2011). Cette hausse de la demande en PMMA se traduit en moyenne par une augmentation annuelle de l’ordre de 10% du prix au gros du MMA Jing (2012). En 2015, la demande globale Ă©galait la capacitĂ© de production Ă  l’échelon mondial Markit (2016); Global Market Analysts (2016). La production de mĂ©thacrylate de mĂ©thyle (MMA) par le procĂ©dĂ© acĂ©tone cyanohydrine (ACH) dĂ©pend de matiĂšres premiĂšres couteuses et toxiques et souffre de faibles conversions. L’estĂ©rification de l’acide mĂ©thacrylique (MAA) en MMA est une alternative au ACH. Cependant, les procĂ©dĂ©s de synthĂšse de MAA requiĂšrent plusieurs Ă©tapes et leurs catalyseurs ont une faible durĂ©e de vie. L’oxydation d’olĂ©fines lĂ©gĂšres en acide mĂ©thacrylique (MAA) – en tant que matiĂšres premiĂšres alternative pour le MMA— rĂ©duit les lacunes du prĂ©cĂ©dĂ© actuel Montag et Mckenna (1991); Drent et Budzelaar (1996); Zhou et al. (2015). Toutefois, les voies proposĂ©es depuis ces matiĂšres premiĂšres souffrent Ă©galement de faibles conversions, de multiples Ă©tapes et de la faible durĂ©e de vie des catalyseurs. Nous avons employĂ© un micro-lit fluidisĂ© gaz-solide pour oxyder partiellement, et pour la premiĂšre fois, du 2–mĂ©thyl–1,3–propanediol (2MPDO) sur un catalyseur hĂ©tĂ©rogĂšne. Au travers du choix du catalyseur, du design du micro-lit fluidisĂ©, de la rĂ©action des composĂ©s thermosensibles en produits Ă  valeur ajoutĂ©, et du modĂšle cinĂ©tique, nous avons cherchĂ© Ă  optimiser l’ensemble du procĂ©dĂ© catalytique pour dĂ©velopper une nouvelle approche pour l’oxydation partielle du 2MDPO en produits chimiques de spĂ©cialitĂ©. Avant de s’attaquer au corps de ce projet de recherche, nous avons rĂ©alisĂ© dans le second chapitre une Ă©tude comprĂ©hensive de l’ensemble des procĂ©dĂ©s actuels, commerciaux et potentiels permettant la “SynthĂšse catalytique d’acide mĂ©thacrylique et de mĂ©thacrylate de mĂ©thyle” (Chapitre 2 : “Catalysis for the synthesis of methacrylic acid and methyl methacrylate”) afin de comprendre les points suivants: 1. Les avantages et inconvĂ©nients des procĂ©dĂ©s actuels ; 2. Le choix, potentiel ou commercial, du catalyseur pour chaque approche ; 3. Les conditions opĂ©ratoires optimales et les mĂ©canismes rĂ©actionnels possibles. Pour le premier objectif spĂ©cifique, nous proposons un nouveau procĂ©dĂ© hĂ©tĂ©rogĂšne gaz-solide-liquide dans lequel nous atomisons le rĂ©actif, liquide, sur le catalyseur pour rĂ©aliser l’oxydation partielle du 2MPDO en MAA et en mĂ©thacrolĂ©ine (MAC). À cet Ă©gard, nous avons assignĂ© les chapitres 3 et 4 de cette thĂšse– ainsi que deux articles publiĂ©s– Ă  cet objectif spĂ©cifique. Le chapitre 3 est intitulĂ© : “Oxydation en phase gaz du 2–mĂ©thyl–1,3–propanediol en acide mĂ©thacrylique sur des catalyseurs hĂ©tĂ©ropolyacidiques” (“Gas phase oxidation of 2–methyl–1,3–propanediol to methacrylic acid over heteropolyacid catalysts”). Le quatriĂšme chapitre, portant sur le mĂȘme thĂšme, est intitulĂ© : “Oxydation partielle du 2–mĂ©thyl–1,3–propanediol en acide mĂ©thacrylique : modĂ©lisation expĂ©rimentale et du rĂ©seau neural” (“Partial oxidation of methyl–1,3–propanediol to methacrylic acid : experimental and neural network modeling”). Le 2MPDO liquide est atomisĂ© par de l’argon sur la surface du catalyseur Ă  une tempĂ©rature de 250 °C. La premiĂšre difficultĂ© expĂ©rimentale est l’agglomĂ©ration du catalyseur au cours du temps qui conduit Ă  l’obstruction du distributeur aprĂšs quelques expĂ©riences. Afin de surmonter ce problĂšme, nous avons optimisĂ© le ratio Ar/2MPDO (gaz/rĂ©actif liquide), la configuration de la buse, et la perte de charge. Parmi tous les catalyseurs hĂ©tĂ©rogĂšnes synthĂ©tisĂ©s, les hĂ©tĂ©ropolycomposĂ©s de type Keggin sont ceux qui se sont montrĂ©s les plus actifs pour rĂ©aliser le clivage de la liaison C−H et oxyder sĂ©lectivement le 2MPDO en MAA+MAC. La tempĂ©rature et le ratio 2MPDO:O2 affectent de façon prĂ©pondĂ©rante le rendement en produits dĂ©sirĂ©s. Les autres Ă©lĂ©ments Ă  considĂ©rer pour ce procĂ©dĂ© sont la formation de coke, le haut taux de conversion, et la formation de sous-produits. Bien que nous ayons testĂ© diffĂ©rent types de catalyseurs avec diffĂ©rentes conditions opĂ©ratoires, nous n’avons toujours aucune idĂ©e de la nature de la relation entre structure du catalyseur et sĂ©lectivitĂ© en produits. Il nous faut Ă©galement rĂ©flĂ©chir Ă  la nature des sites actifs pour ce type de catalyseur et pour cette rĂ©action sachant que la tempĂ©rature de calcination est le paramĂštre de synthĂšse ayant le plus d’impact sur les performances du catalyseur. Notre second objectif spĂ©cifique a ainsi consistĂ© Ă  calciner le catalyseur optimal (dĂ©terminĂ© au premier objectif) Ă  diffĂ©rentes tempĂ©ratures. Nous avons caractĂ©risĂ© le catalyseur avec diffĂ©rentes techniques pour distinguer les diffĂ©rences induites par la calcination en termes de structures. Nous proposons ainsi un nouveau mĂ©canisme qui lie la structure du catalyseur, les rĂ©actifs, et les produits. Les rĂ©sultats du second objectif ont Ă©tĂ© publiĂ©s dans un article reproduits dans le chapitre 5. Le chapitre 5 est intitulĂ© “Des catalyseurs de type Keggin Ă  base de Cs, V et Cu oxydent partiellement le 2–mĂ©thyl–1,3–propanediol en acide mĂ©thacrylique” (“Cs, V, Cu Keggin–type catalysts partially oxidize 2–methyl–1,3–propanediol to methacrylic acid”). La derniĂšre Ă©tape a consistĂ© Ă  modĂ©liser les donnĂ©es expĂ©rimentales des diffĂ©rents mĂ©canismes. Le modĂšle de Mars et Van Krevelen caractĂ©rise nos donnĂ©es mieux que ceux de Langmuir– Hinshelwood ou de Eley–Rideal : la sĂ©quence rĂ©actionnelle implique Ă  la fois des rĂ©actions en sĂ©rie et en parallĂšle dans lesquelles le 2MDPO forme du MAC et du MAA directement et oĂč le MAC formĂ© rĂ©agit ensuite pour donner du MAA. Le taux de rĂ©action en sĂ©rie du MAC en MAA est 50 fois plus rapide que celui de la rĂ©action en parallĂšle (formation du MAC et du MAA). La rĂ©action de 2MPDO sur les sites oxydĂ©s pour former des produits est la Ă©tape limitante. Le chapitre 6 intitulĂ© “CinĂ©tique d’oxydation du 2-mĂ©thyle-1,3-propanediol en acide mĂ©thacrylique”. À l’aide de la comprĂ©hension glanĂ©e dans ce projet, nous pouvons conclure que l’oxydation partielle du 2MDPO dans un rĂ©acteur Ă  lit fluidisĂ© gaz-solide est une approche novatrice pour valoriser le 2MDPO en produits chimiques de spĂ©cialitĂ© et en acides carboxyliques en particulier. Dans le systĂšme gaz-solide-liquide, le 2MDPO est introduit lentement dans le lit avec lequel il est en contact direct. Il s’évapore, et s’oxyde soit Ă  la surface du catalyseur, soit dans le lit. Il est converti en acides carboxyliques. Les catalyseurs acides Ă  base de vanadium et de molybdĂšne font preuve de performances prometteuses pour la conversion du 2MDPO en produits Ă  valeur ajoutĂ©e. Si l’activitĂ© catalytique affecte le rendement et la sĂ©lectivitĂ© en produits, les conditions opĂ©ratoires telles que la tempĂ©rature et la concentration en O2 ont elles-aussi un impact majeur. Le modĂšle cinĂ©tique proposĂ© prĂ©dit de façon prĂ©cise, tout en restant simple, la conversion en 2MDPO, la sĂ©lectivitĂ© en produits, et l’effet des diffĂ©rents paramĂštres. Le co-produit de la mĂ©thode ici-prĂ©sentĂ©e est du syngaz, un mĂ©lange de CO+H2 pouvant ĂȘtre transformĂ© en carburants et autres produits chimiques. ---------- ABSTRACT Methyl methacrylate (MMA) is a specialty monomer for poly–methyl–methacrylate (PMMA), which is marketed under trademarks AcryliteÂź, PlexiglasÂź, LuciteÂź, OptixÂź, PerspexÂź, OroglasÂź, CyroliteÂź, SumipexÂź and AltuglasÂź and applied in diverse industries including paints and coatings, electronics, as a modifier for PVC, and as bone inserts Nagai (2001); Godfrey (1963); Kung (1994); W. Dormer et al. (1998); Smith et al. (1999). Demand of MMA will surpass 4.8 million metric tonne by 2020 Global Market Analysts (2016), where Asia–Pacific is the main market in which China ranks first for production and consumption. North America and Europe are ranked second and third, respectively, while the Middle East, Africa, and Latin America are the areas growing the fastest Global Market Analysts (2016). PMMA (produced from MMA) surpassed 2.8 million tonne annually. Mitsubishi Rayon reported annual growth in demand of more than 0.2 million tonnes (5% to 6%) Nagai et Ui (2004); Program (2006); Schunk et Brem (2011). Due to the increasing demand for PMMA, the price of bulk MMA increased by 10% annually Jing (2012).In 2015, the worldwide demand equalled the global supply capacity Markit (2016); Global Market Analysts (2016). The acetone cyanohydrin process (ACH) to produce methyl methacrylate (MMA) relies on expensive and toxic feedstock and suffers from low yield. Methacrylic acid (MAA) esterification to MMA is an alternative to ACH. However, current processes to produce MAA require multi steps and catalysts lifetime are short. Oxidizing light olefins to methacrylic acid (MAA) – as an alternative feedstock for MMA– reduces the deficiencies of the current process Montag et Mckenna (1991); Drent et Budzelaar (1996); Zhou et al. (2015). However, the proposed routes from these feedstocks also suffer from low yield, multiple steps, and short catalyst lifetime. We employed a gas–solid micro fluidized bed reactor to partially oxidize 2–methyl–1,3–propanediol (2MPDO) over the heterogeneous catalysts for the first time. We targeted developing a catalytic process, the catalyst used, temperature sensitive materials to value added chemicals, a micro fluidized-bed reactor, and kinetic modeling to pave a new road in the partial oxidation of 2MPDO into specialty chemicals. Before starting the main body of the research, we did a comprehensive study as the second chapter entitled “Catalysis for the synthesis of methacrylic acid and methyl methacrylate” on all current commercialized/potential processes to understand the following aspects: 1. The advantages or disadvantages of the current approaches; 2. The potential commercial or developed catalysts for each route; 3. The optimum operating conditions and possible mechanisms. As the first specific objective, we propose a new gas-solid-liquid heterogeneous process in which we atomize the liquid reactant over the catalyst to partially oxidize 2MPDO into MAA and methacrolein (MAC). In this regard, we assigned chapters 3 and 4 of this thesis–as two published papers– to this specific objective. The third chapter is “Gas phase oxidation of 2–methyl–1,3–propanediol to methacrylic acid over heteropolyacid catalysts”. The fourth chapter is also assigned to “Partial oxidation of methyl–1,3–propanediol to methacrylic acid: experimental and neural network modeling”. Argon atomized the liquid 2MPDO over the catalyst surface operating at 250 °C. However, the first encountered issue was catalyst agglomeration with time which blocked injector after some experiments. To overcome this problem, we optimized the Ar/2MPDO ratio, the nozzle configuration and pressure drop. Among the synthesized heterogeneous catalysts, Keggin–type heteropolycompounds were active to cleavage C−H bond of hydrocarbon and selectively oxidize 2MPDO to MAA+MAC. Temperature and the 2MPDO:O2 ratio affect the yield of desired products. Coke formation, high conversion and forming byproducts are the other issues of this process. Although we tested several kind of catalysts over different operating conditions, we still have no idea what the correlation between catalyst structure and products selectivity. On the other hand what the active sites in this catalyst type for this reaction? Moreover, calcination temperature is the most effective parameters on charge transfer among metal ions of catalyst that affects its performance. Therefore as the second objective, we calcined the optimum catalyst structure (obtained from the first objective) at different temperatures. We characterized the catalyst with several techniques to distinguish the differences in their structures. We propose a new mechanism that correlates the catalyst structure, reactant, and products. The results of second objective published as a paper in chapter 5. Chapter 5 entitled “Cs, V, Cu Keggin–type catalysts partially oxidize 2–methyl–1,3–propanediol to methacrylic acid”. As the last step, we modeled experimental data by different mechanisms. The Mars and Van Krevelen model characterizes the experimental data better than the either the Langmuir–Hinshelwood or Eley–Rideal models: The reaction sequence involves both parallel and series reactions in which 2MPDO for MAC and MAA directly and MAC reacts to form MAA but the series reaction rate to MAA is 50 times faster than the parallel reaction rate. Reacting of 2MPDO over the oxidized sites to form products is the rate–limiting step. Chapter 6 entitled “Oxidation kinetics of 2–methyl–1,3–propanediol to methacrylic acid”. With the help of the insight gained in this study we can say that the partial oxidation of 2MPDO in the gas–solid fluidized–bed reactor is a novel approach for upgrading 2MPDO to value–added chemicals and in particularly carboxylic acids as an open chain product from 2MPDO. In the gas-solid-liquid system, 2MPDO was introduced to the bed slowly, directly contacted with the catalyst, evaporates, and oxidized on the surface of the catalyst or in the bed and converted to carboxylic acids. Acidic catalyst based on vanadium and molybdenum demonstrated promising performance in the conversion of 2MPDO to fine chemicals. However, catalyst activity and selectivity changes the liquid product yield and selectivity but reaction condition such as temperature and O2 concentration have a considerable effect, as well. The proposed kinetic model, however, was simple but accurately predicts 2MPDO conversion, product selectivity and the effect of various parameters. The by-product of the introduced method was syngas, which can be converted into fuel and chemicals

    Catalytic glycerol hydrogenolysis to 1,3-propanediol in a gas–solid fluidized bed

    Get PDF
    Glycerol is a potential feedstock to produce 1,3-propanediol (1,3-PDO), which is a valuable commercial polyester monomer. Here, we report the gas-phase glycerol hydrogenolysis to 1,3-propanediol over Pt/WO3/Al2O3 in a fluidized bed operating above 240 degrees C and at ambient pressure. Fluidized beds are ideal contactors for this reaction because the heat transfer rates are sufficiently high to vaporize glycerol thereby minimizing its combustion and thermal degradation. The yield of 1,3-PDO approached 14% after 2 h at 260 degrees C. The major co-products were 1,2-PDO (18%), 1-propanol (28%) and 2-propanol (15%). In the first step, glycerol may dehydrate to acrolein, followed by rehydration to 3-hydroxypropanal and then hydrogenation to 1,3-PDO. The concentrations of the by-products including acrolein, ethylene glycol, propane, and acetone increased with increasing temperature

    Comparing the Performance of KOH with NaOH-Activated Anthracites in Terms of Methane Storage

    No full text
    Anthracite activated carbons are proper adsorbents for methane storage. In this study, Iranian local anthracite was activated using two commonly used chemicals (sodium hydroxide and potassium hydroxide) at similar conditions and their products are compared with regard to various properties in order to find the optimal operating parameters such as temperature, chemical ratio and pyrolysis time for producing ACs with high surface area. Three activation temperatures (670, 730 and 790 °C), three chemical-to-coal ratios (2, 2.5 and 3) and two pyrolysis times (1 and 2 hours) were studied in each carbon series (NaOH and KOH). Accordingly, the pore structures of Activated carbon (ACs) were investigated accurately based on adsorption isotherms of nitrogen as well as density functional theory. In addition, their methane storage capacities were also measured and discussed. Specific volumes (microporosity and mesoporosity) of products were also calculated. The KOH ACs had higher micropore volumes, whereas NaOH ACs had relatively higher densities. The highest methane storage was obtained by a KOH AC sample with 3:1 chemical-to-coal ratio (R), activated at 730 °C for 1 hour (AK37301). The stored and delivered methane for this sample were 176 and 158 vol/vol, respectively

    In-Vitro Evaluation of Crocus Sativus L. Petals and Stamens as Natural Antibacterial Agents Against Food-Borne Bacterial Strains

    No full text
    Abstract Growing interest to use natural preservatives and spices with antimicrobial effects and large amounts of floral bioresidues (92.6 g per 100 g) generated and wasted in the production of saffron spice guided this study to evaluate the opportunity to expand the uses of C. sativus flowers (petals and stamens), beyond the spice (dried stigmas). The antibacterial potential of total extracts and different sub-fractions of floral bio-residues of saffron production (petals and stamens) were primarily evaluated against five bacterial strains potentially causing food-borne disease (Bacillus cereus, Staphylococcus aureus, Salmonella enterica, Escherichia coli and Shigella dysenteriae) using well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined by macrodilution method. Methanol extract of petals had shown more antibacterial activity against S. aureus, S. enteric, and S. dysenteriae compared to stigma. Methanol extract and ethyl acetate sub-fraction of stamens showed more antimicrobial effect against B. cereus and E. coli. The petals total extract showed the most antibacterial activity against Shigella dysenteriae (MIC 15.6mg/ml) while the ethyl acetate and chloroform sub fractions showed the maximum effect against Bacillus cereus(MIC 62.5mg/ml). Stamen methanol total extract and aqueous sub fraction have the maximum effect against Staphylococcus aureus and Bacillus cereus (MIC 62.5mg/ml) while the ethyl acetate sub fraction has the best effect against Shigella dysenteriae (MIC 15.6mg/ml). Results showed that both petals and stamens could act as new and natural sources of antibacterial agents with food industrial applications

    In-Vitro Evaluation of Crocus Sativus L. Petals and Stamens as Natural Antibacterial Agents Against Food-Borne Bacterial Strains: Crocus sativus L. petals and stamens as natural antibacterial agents against food-borne bacterial strains

    No full text
    Growing interest to use natural preservatives and spices with antimicrobial effects and large amounts of floral bio-residues (92.6 g per 100 g) generated and wasted in the production of saffron spice guided this study to evaluate the opportunity to expand the uses of C. sativus flowers (petals and stamens), beyond the spice (dried stigmas). The antibacterial potential of total extracts and different sub-fractions of floral bio-residues of saffron production (petals and stamens) were primarily evaluated against five bacterial strains potentially causing food-borne disease (Bacillus cereus, Staphylococcus aureus, Salmonella enterica, Escherichia coli and Shigella dysenteriae) using well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined by macrodilution method. Methanol extract of petals had shown more antibacterial activity against S. aureus, S. enteric, and S. dysenteriae compared to stigma. Methanol extract and ethyl acetate sub-fraction of stamens showed more antimicrobial effect against B. cereus and E. coli. The petals total extract showed the most antibacterial activity against Shigella dysenteriae (MIC 15.6mg/ml) while the ethyl acetate and chloroform sub fractions showed the maximum effect against Bacillus cereus(MIC 62.5mg/ml). Stamen methanol total extract and aqueous sub fraction have the maximum effect against Staphylococcus aureus and Bacillus cereus (MIC 62.5mg/ml) while the ethyl acetate sub fraction has the best effect against Shigella dysenteriae (MIC 15.6mg/ml). Results showed that both petals and stamens could act as new and natural sources of antibacterial agents with food industrial applications

    Gas phase oxidation of 2-methyl-1,3-propanediol to methacrylic acid over heteropolyacid catalysts

    No full text
    Heteropolyacids with Cs, V and Cu partially oxidize 2MPDO to methacrylic acid (40% selectivity) in the gas phase at 250 °C.</p

    Partial oxidation of 2-methyl-1,3-propanediol to methacrylic acid: experimental and neural network modeling

    No full text
    Methacrylic acid (MAA) is a specialty intermediate to produce methyl methacrylate (MMA), which is a monomer for poly methyl methacrylate.</p
    corecore