12 research outputs found

    Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease

    Get PDF
    BACKGROUND: Deterioration of cognitive functioning is a debilitating symptom in many neurodegenerative diseases, such as Huntington's disease (HD). To date, there are no effective treatments for the cognitive problems associated with HD. Cognitive assessment outcomes will have a central role in the efforts to develop treatments to delay onset or slow the progression of the disease. The TRACK-HD study was designed to build a rational basis for the selection of cognitive outcomes for HD clinical trials. METHODS: There were a total of 349 participants, including controls (n=116), premanifest HD (n=117) and early HD (n=116). A standardised cognitive assessment battery (including nine cognitive tests comprising 12 outcome measures) was administered at baseline, and at 12 and 24 months, and consisted of a combination of paper and pencil and computerised tasks selected to be sensitive to cortical-striatal damage or HD. Each cognitive outcome was analysed separately using a generalised least squares regression model. Results are expressed as effect sizes to permit comparisons between tasks. RESULTS: 10 of the 12 cognitive outcomes showed evidence of deterioration in the early HD group, relative to controls, over 24 months, with greatest sensitivity in Symbol Digit, Circle Tracing direct and indirect, and Stroop word reading. In contrast, there was very little evidence of deterioration in the premanifest HD group relative to controls. CONCLUSIONS: The findings describe tests that are sensitive to longitudinal cognitive change in HD and elucidate important considerations for selecting cognitive outcomes for clinical trials of compounds aimed at ameliorating cognitive decline in HD

    Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy.

    No full text
    TRACK-HD is a multicentre longitudinal observational study investigating the use of clinical assessments and 3-Tesla magnetic resonance imaging as potential biomarkers for future therapeutic trials in Huntington's disease (HD). The cross-sectional data from this large well-characterized dataset provide the opportunity to improve our knowledge of how the underlying neuropathology of HD may contribute to the clinical manifestations of the disease across the spectrum of premanifest (PreHD) and early HD. Two hundred and thirty nine gene-positive subjects (120 PreHD and 119 early HD) from the TRACK-HD study were included. Using voxel-based morphometry (VBM), grey and white matter volumes were correlated with performance in four domains: quantitative motor (tongue force, metronome tapping, and gait); oculomotor [anti-saccade error rate (ASE)]; cognition (negative emotion recognition, spot the change and the University of Pennsylvania smell identification test) and neuropsychiatric measures (apathy, affect and irritability). After adjusting for estimated disease severity, regionally specific associations between structural loss and task performance were found (familywise error corrected, P < 0.05); impairment in tongue force, metronome tapping and ASE were all associated with striatal loss. Additionally, tongue force deficits and ASE were associated with volume reduction in the occipital lobe. Impaired recognition of negative emotions was associated with volumetric reductions in the precuneus and cuneus. Our study reveals specific associations between atrophy and decline in a range of clinical modalities, demonstrating the utility of VBM correlation analysis for investigating these relationships in HD

    Intellectual enrichment and genetic modifiers of cognition and brain volume in Huntington's disease

    Get PDF
    An important step towards the development of treatments for cognitive impairment in ageing and neurodegenerative diseases is to identify genetic and environmental modifiers of cognitive function and understand the mechanism by which they exert an effect. In Huntington’s disease, the most common autosomal dominant dementia, a small number of studies have identified intellectual enrichment, i.e. a cognitively stimulating lifestyle and genetic polymorphisms as potential modifiers of cognitive function. The aim of our study was to further investigate the relationship and interaction between genetic factors and intellectual enrichment on cognitive function and brain atrophy in Huntington’s disease. For this purpose, we analysed data from Track-HD, a multi-centre longitudinal study in Huntington’s disease gene carriers and focused on the role of intellectual enrichment (estimated at baseline) and the genes FAN1, MSH3, BDNF, COMT and MAPT in predicting cognitive decline and brain atrophy. We found that carrying the 3a allele in the MSH3 gene had a positive effect on global cognitive function and brain atrophy in multiple cortical regions, such that 3a allele carriers had a slower rate of cognitive decline and atrophy compared with non-carriers, in agreement with its role in somatic instability. No other genetic predictor had a significant effect on cognitive function and the effect of MSH3 was independent of intellectual enrichment. Intellectual enrichment also had a positive effect on cognitive function; participants with higher intellectual enrichment, i.e. those who were better educated, had higher verbal intelligence and performed an occupation that was intellectually engaging, had better cognitive function overall, in agreement with previous studies in Huntington’s disease and other dementias. We also found that intellectual enrichment interacted with the BDNF gene, such that the positive effect of intellectual enrichment was greater in Met66 allele carriers than non-carriers. A similar relationship was also identified for changes in whole brain and caudate volume; the positive effect of intellectual enrichment was greater for Met66 allele carriers, rather than for non-carriers. In summary, our study provides additional evidence for the beneficial role of intellectual enrichment and carrying the 3a allele in MSH3 in cognitive function in Huntington’s disease and their effect on brain structure

    Visuomotor integration deficits precede clinical onset in Huntington's disease.

    No full text
    OBJECTIVES: Visuomotor integration deficits have been documented in Huntington disease (HD), with disproportionately more impairment when direct visual feedback is unavailable. Visuomotor integration under direct and indirect visual feedback conditions has not been investigated in the stage before clinical onset ('premanifest'). However, given evidence of posterior cortical atrophy in premanifest HD, we predicted visuomotor integration would be adversely affected, with greater impairment under conditions of indirect visual feedback. METHODS: 239 subjects with the HD CAG expansion, ranging from more than a decade before predicted clinical onset until early stage disease, and 122 controls, completed a circle-tracing task, which included both direct and indirect visual feedback conditions. Measures included accuracy, speed, and speed of error detection and correction. Using brain images acquired with 3T magnetic resonance imaging (MRI), we generated grey and white matter volumes with voxel-based morphometry, and analyzed correlations with circle-tracing performance. RESULTS: Compared with controls, early HD was associated with lower accuracy and slower performance in both circle-tracing conditions. Premanifest HD was associated with lower accuracy in both conditions and fewer rotations in the direct condition. Comparing performance in the indirect condition with the direct condition, HD gene expansion-carriers exhibited a disproportionate increase in errors relative to controls. Premanifest and early HD groups required longer to detect and correct errors, especially in the indirect condition. Slower performance in the indirect condition was associated with lower grey matter volumes in the left somatosensory cortex in VBM analyses. CONCLUSIONS: Visuomotor integration deficits are evident many years before the clinical onset of HD, with deficits in speed, accuracy, and speed of error detection and correction. The visuomotor transformation demands of the indirect condition result in a disproportionate decrease in accuracy in the HD groups. Slower performance under indirect visual feedback was associated with atrophy of the left-hemisphere somatosensory cortex, which may reflect the proprioceptive demands of the task

    Emotional face recognition deficits and medication effects in pre-manifest through stage-II Huntington's disease

    No full text
    Facial emotion recognition impairments have been reported in Huntington's disease (HD). However, the nature of the impairments across the spectrum of HD remains unclear. We report on emotion recognition data from 344 participants comprising premanifest HD (PreHD) and early HD patients, and controls. In a test of recognition of facial emotions, we examined responses to six basic emotional expressions and neutral expressions. In addition, and within the early HD sample, we tested for differences on emotion recognition performance between those 'on' vs. 'off' neuroleptic or selective serotonin reuptake inhibitor (SSRI) medications. The PreHD groups showed significant (p<0.05) impaired recognition, compared to controls, on fearful, angry and surprised faces; whereas the early HD groups were significantly impaired across all emotions including neutral expressions. In early HD, neuroleptic use was associated with worse facial emotion recognition, whereas SSRI use was associated with better facial emotion recognition. The findings suggest that emotion recognition impairments exist across the HD spectrum, but are relatively more widespread in manifest HD than in the premanifest period. Commonly prescribed medications to treat HD-related symptoms also appear to affect emotion recognition. These findings have important implications for interpersonal communication and medication usage in HD

    Emotional face recognition deficits and medication effects in pre-manifest through stage-II Huntington's disease

    No full text
    Facial emotion recognition impairments have been reported in Huntington's disease (HD). However, the nature of the impairments across the spectrum of HD remains unclear. We report on emotion recognition data from 344 participants comprising premanifest HD (PreHD) and early HD patients, and controls. In a test of recognition of facial emotions, we examined responses to six basic emotional expressions and neutral expressions. In addition, and within the early HD sample, we tested for differences on emotion recognition performance between those ‘on’ vs. ‘off’ neuroleptic or selective serotonin reuptake inhibitor (SSRI) medications. The PreHD groups showed significant (p<0.05) impaired recognition, compared to controls, on fearful, angry and surprised faces; whereas the early HD groups were significantly impaired across all emotions including neutral expressions. In early HD, neuroleptic use was associated with worse facial emotion recognition, whereas SSRI use was associated with better facial emotion recognition. The findings suggest that emotion recognition impairments exist across the HD spectrum, but are relatively more widespread in manifest HD than in the premanifest period. Commonly prescribed medications to treat HD-related symptoms also appear to affect emotion recognition. These findings have important implications for interpersonal communication and medication usage in HD

    Visual Working Memory Impairment in Premanifest Gene-Carriers and Early Huntington's Disease.

    Get PDF
    Working memory deficits have been found in Huntington's disease (HD) and in a small group of premanifest (PreHD) gene-carriers. However, the nature and extent of these deficits are unknown. In a large cross-sectional study, we aimed to determine the degree of visuospatial working memory dysfunction across multiple stages of HD. Specifically, visuospatial working memory capacity and response times across various degrees of difficulty were examined, as well as the relationship between visuospatial working memory and motor dysfunction. We examined 62 PreHD-A gene-carriers (>10.8 years from estimated disease onset), 58 PreHD-B gene-carriers (<10.8 years from estimated disease onset), 77 stage-1 HD patients (HD1), 44 stage-2 HD patients (HD2), and 122 healthy controls. Participants viewed coloured squares (in sets of 3, 5 and 7) on a screen and were to decide whether on a subsequent screen the encircled square has changed colour. Accuracy and response times were recorded. Compared to controls, significant group differences in visuospatial working memory capacity (accuracy) were seen in PreHD-B, HD1 and HD2 groups across the difficulty levels. Significant group differences on response times were found for all groups (PreHD-A to HD2) compared to controls; the most difficult level producing the only group difference in speed between PreHD-A and controls. Accuracy and speed were positively correlated only in the HD groups. These findings suggest that visuospatial working memory impairments are detectable in both premanifest and manifest HD; the manifest HD showed evidence for a "worse-worse phenomenon" whereby reductions were present in both motor speed and accuracy

    Neuropsychiatry and white matter microstructure in Huntington's Disease

    Get PDF
    Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation
    corecore