43 research outputs found
Effect of Hund's exchange on the spectral function of a triply orbital degenerate correlated metal
We present an approach based on the dynamical mean field theory which is able
to give the excitation spectrum of a triply degenerate Hubbard model with a
Hund's exchange invariant under spin rotation. The lattice problem can be
mapped onto a local Anderson model containing 64 local eigenstates. This local
problem is solved by a generalized non-crossing approximation. The influence of
Hund's coupling J is examined in detail for metallic states close to the metal
insulator transition. The band-filling is shown to play a crucial role
concerning the effect of J on the low energy dynamics.Comment: Phys. Rev. B (In Press
Is there spin-charge separation in the 2D Hubbard and t-J models at low electronic densities?
The spin and density correlation functions of the two-dimensional Hubbard
model at low electronic density are calculated in the ground state by
using the power method, and at finite temperatures by using the quantum Monte
Carlo technique. Both approaches produce similar results, which are in close
agreement with numerical and high temperature expansion results for the
two-dimensional model. Using perturbative approximations, we show
that the examination of the density correlation function alone is not enough to
support recent claims in the literature that suggested spin and charge
separation in the low electronic density regime of the model.Comment: 11 pages, tex, 3 figures upon request, NTHU - preprin
Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping
A combination of analytical approaches and quantum Monte Carlo simulations is
used to study both magnetic and pairing correlations for a version of the
Hubbard model that includes second-neighbor hopping as a
model for high-temperature superconductors. Magnetic properties are analyzed
using the Two-Particle Self-Consistent approach. The maximum in magnetic
susceptibility as a function of doping appears both at finite
and at but for two totally different physical reasons. When
, it is induced by antiferromagnetic correlations while at
it is a band structure effect amplified by interactions.
Finally, pairing fluctuations are compared with -matrix results to
disentangle the effects of van Hove singularity and of nesting on
superconducting correlations. The addition of antiferromagnetic fluctuations
increases slightly the -wave superconducting correlations despite the
presence of a van Hove singularity which tends to decrease them in the
repulsive model. Some aspects of the phase diagram and some subtleties of
finite-size scaling in Monte Carlo simulations, such as inverted finite-size
dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
Pairing fluctuations and pseudogaps in the attractive Hubbard model
The two-dimensional attractive Hubbard model is studied in the weak to
intermediate coupling regime by employing a non-perturbative approach. It is
first shown that this approach is in quantitative agreement with Monte Carlo
calculations for both single-particle and two-particle quantities. Both the
density of states and the single-particle spectral weight show a pseudogap at
the Fermi energy below some characteristic temperature T*, also in good
agreement with quantum Monte Carlo calculations. The pseudogap is caused by
critical pairing fluctuations in the low-temperature renormalized classical
regime of the two-dimensional system. With increasing temperature
the spectral weight fills in the pseudogap instead of closing it and the
pseudogap appears earlier in the density of states than in the spectral
function. Small temperature changes around T* can modify the spectral weight
over frequency scales much larger than temperature. Several qualitative results
for the s-wave case should remain true for d-wave superconductors.Comment: 20 pages, 12 figure