43 research outputs found

    First WP4 Workshop report in Zebilla

    Get PDF

    Effect of Hund's exchange on the spectral function of a triply orbital degenerate correlated metal

    Full text link
    We present an approach based on the dynamical mean field theory which is able to give the excitation spectrum of a triply degenerate Hubbard model with a Hund's exchange invariant under spin rotation. The lattice problem can be mapped onto a local Anderson model containing 64 local eigenstates. This local problem is solved by a generalized non-crossing approximation. The influence of Hund's coupling J is examined in detail for metallic states close to the metal insulator transition. The band-filling is shown to play a crucial role concerning the effect of J on the low energy dynamics.Comment: Phys. Rev. B (In Press

    TAI Project - WP4 Workshops report

    Get PDF

    Is there spin-charge separation in the 2D Hubbard and t-J models at low electronic densities?

    Full text link
    The spin and density correlation functions of the two-dimensional Hubbard model at low electronic density are calculated in the ground state by using the power method, and at finite temperatures by using the quantum Monte Carlo technique. Both approaches produce similar results, which are in close agreement with numerical and high temperature expansion results for the two-dimensional tJ{\rm t-J} model. Using perturbative approximations, we show that the examination of the density correlation function alone is not enough to support recent claims in the literature that suggested spin and charge separation in the low electronic density regime of the tJ{\rm t-J} model.Comment: 11 pages, tex, 3 figures upon request, NTHU - preprin

    Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

    Full text link
    A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping t=0.35tt^{\prime }=-0.35t as a model for high-temperature superconductors. Magnetic properties are analyzed using the Two-Particle Self-Consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite % t^{\prime } and at t=0t^{\prime }=0 but for two totally different physical reasons. When t=0t^{\prime }=0, it is induced by antiferromagnetic correlations while at t=0.35tt^{\prime }=-0.35t it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with % T -matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the dd-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    Pairing fluctuations and pseudogaps in the attractive Hubbard model

    Full text link
    The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime ω<T\omega < T of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.Comment: 20 pages, 12 figure
    corecore