206 research outputs found

    The resilience of interdependent transportation networks under targeted attack

    Full text link
    Modern world builds on the resilience of interdependent infrastructures characterized as complex networks. Recently, a framework for analysis of interdependent networks has been developed to explain the mechanism of resilience in interdependent networks. Here we extend this interdependent network model by considering flows in the networks and study the system's resilience under different attack strategies. In our model, nodes may fail due to either overload or loss of interdependency. Under the interaction between these two failure mechanisms, it is shown that interdependent scale-free networks show extreme vulnerability. The resilience of interdependent SF networks is found in our simulation much smaller than single SF network or interdependent SF networks without flows.Comment: 5 pages, 4 figure

    Wikipedia-Based Automatic Diagnosis Prediction in Clinical Decision Support Systems

    Get PDF
    When making clinical decisions, physicians often consult biomedical literatures for reference. In this case, an effective clinical decision support system, provided with a patient’s health information, should be able to generate accurate queries and return to the physicians with useful articles. Related works in the Clinical Decision Support (CDS) track of TREC 2015 demonstrated the usefulness of knowing patients’ diagnosis information for supporting more effective retrieval, but the diagnosis information is often missing in most cases. Furthermore, it is still a great challenge to perform large-scale automatic diagnosis prediction. This motivates us to propose an automatic diagnosis prediction method to enhance the retrieval in a clinical decision support system, where the evidence for the prediction is extracted from Wikipedia. Through the evaluation conducted on 2014 CDS tasks, our method reaches the best performance among all submitted runs. In the next step, graph structured evidence will be integrated to make the prediction more accurate

    Enhancing Automatic ICD-9-CM Code Assignment for Medical Texts with PubMed

    Get PDF
    Assigning a standard ICD-9-CM code to disease symptoms in medical texts is an important task in the medical domain. Automating this process could greatly reduce the costs. However, the effectiveness of an automatic ICD-9-CM code classifier faces a serious problem, which can be triggered by unbalanced training data. Frequent diseases often have more training data, which helps its classification to perform better than that of an infrequent disease. However, a disease’s frequency does not necessarily reflect its importance. To resolve this training data shortage problem, we propose to strategically draw data from PubMed to enrich the training data when there is such need. We validate our method on the CMC dataset, and the evaluation results indicate that our method can significantly improve the code assignment classifiers' performance at the macro-averaging level

    Stationary distribution of stochastic SIRS epidemic model with standard incidence

    Get PDF
    We study stochastic versions of a deterministic SIRS (Susceptible, Infective, Recovered, Susceptible) epidemic model with standard incidence. We study the existence of a stationary distribution of stochastic system by the theory of integral Markov semigroup. We prove the distribution densities of the solutions can converge to an invariant density in L1. This shows the system is ergodic. The presented results are demonstrated by numerical simulations
    • …
    corecore