9 research outputs found

    Refractive Changes Induced by Strabismus Corrective Surgery in Adults

    Get PDF
    Purpose. To investigate refractive changes after strabismus correction procedures among adults. Methods. Retrospective chart review of adult patients who had horizontal recti muscles surgery with preoperative and postoperative cycloplegic refraction measurements. The preoperative refraction was mathematically subtracted from the postoperative refraction, and the induced refractive changes were statistically analyzed. Vector analysis was used to examine the magnitude of the toric change. The proportion of clinically significant refractive change was evaluated as well. Results. Thirty-one eyes from 22 subjects met the criteria and were included in the final analysis. A significant postoperative refractive change of the spherical equivalent towards myopia and a change of the astigmatism in the with-the-rule direction were observed. In a subset of 9 cases a third cycloplegic refraction measurement demonstrated stable refraction compared to the 1-month postoperative measurement. In 10 cases of single eye surgery, significant refractive changes were observed only in the operated side when compared to the sound eye. The induced surgical refractive change was of clinical significance (≥0.5 D) in 11 eyes of 9 patients (40.9% of patients). Conclusions. Refractive changes are a significant side effect of horizontal strabismus corrective surgery among adults. Therefore, patients should be informed about it prior to surgery and should be rerefracted in the postoperative period

    Extraocular muscle damage from dental implant penetration to the orbit

    No full text
    Purpose: To demonstrate an unusual case of orbital trauma due to dental surgery complication. Observations: An elderly patient who underwent dental implantation to the zygomatic bone was hospitalized in the ophthalmology department with impaired abduction of her right eye, also evident on ocular examination. Head computed tomography demonstrated damage to the lateral rectus and to the inferior oblique muscles. Clinical assessment determined these muscles could not be repaired and reattached. The extent of irreversible damage in the patient was permanent limitation in movement of her affected eye with subsequent strabismus. Conclusions and importance: Accurate pre-operative planning of dental zygomatic implant insertion, as well as selecting the size and direction of the implant, are imperative. Moreover, performing surgery in multidisciplinary centers with oculofacial plastic surgeons in such cases, may reduce risk of this complication, make it a safer procedure, and allow immediate treatment when required

    Subjective versus objective refraction in healthy young adults

    No full text
    Abstract Purpose To evaluate objective and subjective refraction differences in healthy young adults. Methods Data concerning candidates for the Israeli Air Force Flight Academy, as well as active air force pilots in all stages of service who underwent a routine health checkup between the years 2018 and 2019 were retrospectively analyzed. Objective refraction measured using a single autorefractometer was compared with subjective refraction measured by an experienced military optometrist during the same visit. The results were converted to power vectors (spherical equivalent [SE], J0, and J45). To interpret astigmatism using power vector values, the cylinder power (Cp) was determined. Results This study included 1,395 young adult participants. The average age was 22.17 years (range, 17–39, 84.8% males). The average SE was − 0.65 ± 1.19 diopter (D) compared with − 0.71 ± 0.91D in the auto- and subjective refraction, respectively (p = 0.001). Cp was 0.91 ± 0.52D and 0.67 ± 0.40D, respectively (p < 0.001). This difference was more common in older participants (p < 0.001). J0 and J45 value differences were not significant. The absolute SE value of subjective refraction was lower in the myopic (p < 0.001) and hyperopic (p < 0.001) patients. Conclusions Young hyperopic participants tended to prefer “less plus” in subjective refraction compared with autorefraction. Young myopic participants tended to prefer “less minus” in subjective refraction compared with autorefraction. All participants, but mainly older participants, preferred slightly “less Cp” than that measured using autorefraction; The astigmatic axis did not differ significantly between the methods

    Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress

    No full text
    Oxidative stress leads to the degeneration of retinal pigment epithelial (RPE) and photoreceptor cells. We evaluated the potential of adipose-derived mesenchymal stem cells (ASCs) as a therapeutic tool by studying the migration capacity of ASCs in vitro and their protective effect against RPE cell death under oxidative stress in vitro and in vivo. ASCs exhibited enhanced migration when exposed to conditioned medium of oxidative stressed RPE cells obtained by hydrogen peroxide. Migration-related axis SDF-1/CXCR4 was studied, and upregulation of SDF-1 in stressed RPE and of CXCR4 in ASCs was detected. Moreover, ASCs’ conditioned medium prevented H2O2-induced cell death of RPE cells. Early passage ASCs had high expression level of HGF, low VEGF levels, and unmodulated IL-1β levels, compared to late passage ASCs. Thus, early passage ASCs show the potential to migrate towards damaged RPE cells and protect them in a paracrine manner from cell death induced by oxidative stress. In vivo, mice received systemic injection of NaIO3, and 72 h later, ASCs were transplanted in the subretinal space. Seven days after ASC transplantation, the eyes were enucleated fixed and frozen for immunohistochemical analysis. Under such conditions, ASC-treated mice showed preservation of nuclear layers in the outer nuclear layer and stronger staining of RPE and photoreceptor layer, compared to PBS-treated mice. Taken together, our results indicate that ASCs are able to home in on damaged RPE cells and protect against damage to the RPE and PR layers caused by oxidative stress. These data imply the potential that ASCs have in regenerating RPE under oxidative stress, providing the basis for a therapeutic approach to retinal degeneration diseases related to oxidative stress that could help save the eyesight of millions of people worldwide

    Adipose-Derived Mesenchymal Stem Cells Migrate and Rescue RPE in the Setting of Oxidative Stress

    No full text
    Oxidative stress leads to the degeneration of retinal pigment epithelial (RPE) and photoreceptor cells. We evaluated the potential of adipose-derived mesenchymal stem cells (ASCs) as a therapeutic tool by studying the migration capacity of ASCs in vitro and their protective effect against RPE cell death under oxidative stress in vitro and in vivo. ASCs exhibited enhanced migration when exposed to conditioned medium of oxidative stressed RPE cells obtained by hydrogen peroxide. Migration-related axis SDF-1/CXCR4 was studied, and upregulation of SDF-1 in stressed RPE and of CXCR4 in ASCs was detected. Moreover, ASCs’ conditioned medium prevented H2O2-induced cell death of RPE cells. Early passage ASCs had high expression level of HGF, low VEGF levels, and unmodulated IL-1β levels, compared to late passage ASCs. Thus, early passage ASCs show the potential to migrate towards damaged RPE cells and protect them in a paracrine manner from cell death induced by oxidative stress. In vivo, mice received systemic injection of NaIO3, and 72 h later, ASCs were transplanted in the subretinal space. Seven days after ASC transplantation, the eyes were enucleated fixed and frozen for immunohistochemical analysis. Under such conditions, ASC-treated mice showed preservation of nuclear layers in the outer nuclear layer and stronger staining of RPE and photoreceptor layer, compared to PBS-treated mice. Taken together, our results indicate that ASCs are able to home in on damaged RPE cells and protect against damage to the RPE and PR layers caused by oxidative stress. These data imply the potential that ASCs have in regenerating RPE under oxidative stress, providing the basis for a therapeutic approach to retinal degeneration diseases related to oxidative stress that could help save the eyesight of millions of people worldwide
    corecore