5 research outputs found

    Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway

    Get PDF
    Background. Oxidative stress plays an important role in the pathogenesis of contrast-induced nephropathy (CIN). The aim of this study was to investigate the antioxidant effects of sulforaphane (SFN) in a rat model of CIN and a cell model of oxidative stress in HK2 cells. Methods. Rats were randomized into four groups (n=6 per group): control group, Ioversol group (Ioversol-induced CIN), Ioversol + SFN group (CIN rats pretreated with SFN), and SFN group (rats treated with SFN). Renal function tests, malondialdehyde (MDA), and reactive oxygen species (ROS) were measured. Western blot, real-time polymerase chain reaction analysis, and immunohistochemical analysis were performed for nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO-1) detection. Results. Serum blood urea nitrogen (BUN), creatinine, and renal tissue MDA were increased after contrast exposure. Serum BUN, creatinine, and renal tissue MDA were decreased in the Ioversol + SFN group as compared with those in the Ioversol group. SFN increased the expression of Nrf2 and HO-1 in CIN rats and in Ioversol-induced injury HK2 cells. SFN increased cell viability and attenuated ROS level in vitro. Conclusions. SFN attenuates experimental CIN in vitro and in vivo. This effect is suggested to activate the Nrf2 antioxidant defenses pathway

    The Association Between Oxidative Stress Alleviation via Sulforaphane-Induced Nrf2-HO-1/NQO-1 Signaling Pathway Activation and Chronic Renal Allograft Dysfunction Improvement

    No full text
    Background/Aims: Chronic renal allograft dysfunction (CRAD) is a leading cause of long-term renal allograft loss. Oxidative stress may account for the nonspecific interstitial fibrosis and tubular atrophy that occur in CRAD. An antioxidant intervention via Nrf2 signaling pathway activation might be a promising therapy for some kidney diseases. The present paper investigates whether there is an association between oxidative stress alleviation via sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation and CRAD improvement. Methods: F344 rat kidneys were orthotopically transplanted into Lewis rat recipients to establish CRAD models. Sulforaphane was administered at 1.5 mg/kg intraperitoneally once daily. Renal function and 24-hour urinary protein were monitored for variations for 24 weeks after transplantation. After 24 weeks, renal histopathology was evaluated according to the Banff criteria after hematoxylin and eosin, Masson’s trichrome and periodic acid-Schiff stainings. Additionally, intrarenal oxidative stress was assessed by the indicators malondialdehyde, 8-isoprostane, oxidized-low density lipoprotein and 8-hydroxy-2’-deoxyguanosine, as well as the activity levels of the antioxidant enzymes total superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and γ-glutamylcysteine synthetase. Nrf2, HO-1 and NQO-1 expression levels were determined via immunohistochemical and Western blot analyses. Results: The sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation, as demonstrated by immunohistochemical and Western blot analyses, delayed the progression of serum creatinine and blood urea nitrogen, particularly lowering the 24-hour urinary protein levels of CRAD. The semi-quantified histopathological changes were also alleviated. Evidence of oxidative stress alleviation, as indicated by a concurrent decrease in the indicators and sustained levels of antioxidant enzymes activity, was found in the renal allografts after sulforaphane intervention. Conclusion: Oxidative stress alleviation caused by continuous sulforaphane-induced Nrf2-HO-1/NQO-1 signaling pathway activation is associated with functional and morphological improvements of CRAD

    An Anchor-Free Detection Algorithm for SAR Ship Targets with Deep Saliency Representation

    No full text
    Target detection in synthetic aperture radar (SAR) images has a wide range of applications in military and civilian fields. However, for engineering applications involving edge deployment, it is difficult to find a suitable balance of accuracy and speed for anchor-based SAR image target detection algorithms. Thus, an anchor-free detection algorithm for SAR ship targets with deep saliency representation, called SRDet, is proposed in this paper to improve SAR ship detection performance against complex backgrounds. First, we design a data enhancement method considering semantic relationships. Second, the state-of-the-art anchor-free target detection framework CenterNet2 is used as a benchmark, and a new feature-enhancing lightweight backbone, called LWBackbone, is designed to reduce the number of model parameters while effectively extracting the salient features of SAR targets. Additionally, a new mixed-domain attention mechanism, called CNAM, is proposed to effectively suppress interference from complex land backgrounds and highlight the target area. Finally, we construct a receptive-field-enhanced detection head module, called RFEHead, to improve the multiscale perception performance of the detection head. Experimental results based on three large-scale SAR target detection datasets, SSDD, HRSID and SAR-ship-dataset, show that our algorithm achieves a better balance between ship target detection accuracy and speed and exhibits excellent generalization performance
    corecore