119 research outputs found

    Interaction of acetamiprid with extracellular polymeric substances (EPS) from activated sludge: A fluorescence study

    Get PDF
    Extracellular polymeric substances (EPS) are important components of activated sludge and it plays an important role in removing pollutants. The interaction between EPS and organic pollutants is still little known. In the present study, the interaction of soluble/bound EPS with acetamiprid, a neonicotinoid insecticide, was investigated using the three-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy. The fluorescence spectra of EPS revealed that there were two classes of protein-like fluorophores in soluble/bound EPS and one class of fulvic acid-like fluorophore, in addition, in bound EPS. The quenching of protein-like fluorescence by acetamiprid indicated that static quenching (at peak B) and combined quenching (at peak A) occurred simultaneously. The interaction of acetamiprid with EPS was observed to have resulted in the formation of acetamiprid-EPS complexes. The binding constants of the soluble EPS for acetamiprid were greater than those of the bound EPS, indicating the soluble EPS had stronger binding capacity for acetamiprid than the bound EPS. This study confirmed that EPS (soluble/bound) play important roles in biosorption of organic pollutants by activated sludge and also indicated that they may serve as a protective barrier against toxic organic matter, for the microorganisms.Key words: Extracellular polymeric substance (EPS), activated sludge, fluorescence quenching, binding constant, acetamiprid

    Removal of malachite green from water by Firmiana simplex wood fiber

    Full text link

    Designer Amphiphilic Short Peptides Enhance Thermal Stability of Isolated Photosystem-I

    Get PDF
    Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies

    Rapid flocculation-sedimentation of microalgae with organosilane-functionalized halloysite

    Get PDF
    Microalgae is a promising feedstock of biofuel for alternating fossil fuels. The major challenge of microalgal biofuels for commercial applications is in designing an efficient harvesting method with high economic feasibility. In this study, a rapid flocculation-sedimentation harvesting method induced by organosilane-functionalized halloysite flocculant was achieved for Scenedesmus dimorphus harvest. The harvesting efficiency was significantly influenced by the pH of microalgal dispersion and the dosage of flocculant. The optimized harvesting condition was pH 3.0 with flocculant dosage of 1.0 g.g(-1) cell dry mass. Under the optimized harvesting condition, microalgae rapidly reached 93% harvesting efficiency within 0.5 min of settling time, and reached 98% harvesting efficiency within 2 min of settling time. The rapid flocculation was attributed to the charge neutralization of the negatively-charged microalgae cells by the positively-charged organosilane-functionalized halloysite flocculant and to the sweep flocculation by organosilane-functionalized halloysite flocculant. The organosilane-functionalized halloysite flocculant did not affect the lipid extraction of microalgae, and not contaminate the extracted residuals. The organosilane-functionalized halloysite flocculant is of high efficient, cost-effective, and eco-friendly, makes it be of promising application for commercial microalgae harvesting.</p

    Removal of malachite green from water by Firmiana simplex wood fiber

    Get PDF
    This study shows that wood fiber of Phoenix tree (Firmiana simplex) is an effective adsorbent for malachite green (MG). MG sorption behavior onto the wood adsorbent was investigated in this study. Basic condition was favorable for MG adsorption to the adsorbent. The pseudo second order equation well described MG adsorption onto the wood adsorbent. The Freundlich Isotherm could describe the sorption data. The positive value of Delta H-0 showed that adsorption of malachite green onto the wood adsorbent was endothermic. The negative values of Delta G at various temperatures indicate the spontaneous nature of the adsorption process

    Earthworms (Eisenia foetida, Savigny) mucus as complexing ligand for imidacloprid

    Get PDF
    Earthworms can excrete copious amounts of mucus that may affect the fraction, transport fate, and bioavailability of contaminants in soil. However, interaction of mucus with organic contaminants is still not well-known. In the present study, complexation properties of surface mucus (from the earthworm species Eisenia foetida, Savigny) with imidacloprid were investigated using fluorescence excitation emission matrix (EEM) spectroscopy. It was found that carbohydrates and proteins are major components in mucus of this species. Two fluorescent peaks belonging to protein-like substances were identified in the EEM spectrum of mucus. The protein-like fluorescence was clearly quenched by imidacloprid, indicating that the protein-like substances reacted strongly with imidacloprid. The fluorescence quenching processes was governed by a static process. The values of effective quenching constant (logK (a)) for these two peaks were 11.46 and 7.96, respectively, indicating that there is a strong interaction between mucus and imidacloprid and mucus-imidacloprid complexes are formed. Higher binding constants (logK (b) = 25.6 and 14.0) than those for heavy metals binding to dissolved organic matter or organic pollutants binding to proteins confirm the strong complexation between mucus and imidacloprid. Our study implies that earthworm surface mucus may significantly affect the fraction, toxicity, and bioavailability of organic contaminants in the soil due to its high affinity for organic contaminants

    Uranium Bioreduction and Biomineralization

    Get PDF
    Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles
    • …
    corecore