48 research outputs found

    Comprehensive transcriptional profiling of aging porcine liver

    Get PDF
    Background Aging is a major risk factor for the development of many diseases, and the liver, as the most important metabolic organ, is significantly affected by aging. It has been shown that the liver weight tends to increase in rodents and decrease in humans with age. Pigs have a genomic structure, with physiological as well as biochemical features that are similar to those of humans, and have therefore been used as a valuable model for studying human diseases. The molecular mechanisms of the liver aging of large mammals on a comprehensive transcriptional level remain poorly understood. The pig is an ideal model animal to clearly and fully understand the molecular mechanism underlying human liver aging. Methods In this study, four healthy female Yana pigs (an indigenous Chinese breed) were investigated: two young sows (180-days-old) and two old sows (8-years-old). High throughput RNA sequencing was performed to evaluate the expression profiles of messenger RNA, long non-coding RNAs, micro RNAs, and circular RNAs during the porcine liver aging process. Gene Ontology (GO) analysis was performed to investigate the biological functions of age-related genes. Results A number of age-related genes were identified in the porcine liver. GO annotation showed that up-regulated genes were mainly related to immune response, while the down-regulated genes were mainly related to metabolism. Moreover, several lncRNAs and their target genes were also found to be differentially expressed during liver aging. In addition, the multi-group cooperative control relationships and constructed circRNA-miRNA co-expression networks were assessed during liver aging. Conclusions Numerous age-related genes were identified and circRNA-miRNA co-expression networks that are active during porcine liver aging were constructed. These findings contribute to the understanding of the transcriptional foundations of liver aging and also provide further references that clarify human liver aging at the molecular level

    Experimental study on chloride ion diffusion behavior and microstructure in concrete under alternating ambient humidity conditions

    No full text
    The migration of chloride in concrete in atmospheric zones is mainly influenced by climatic conditions, e.g., various dry-wet cycles in marine tidal zones, and ambient humidity is one of the most important influences. Ambient humidity also determines the moisture content in concrete, which is necessary for the diffusion or transport of chloride in concrete and can enhance the migration of chloride in micropores, thus affecting the distribution of chloride in concrete. In this study, the effects of chloride diffusion and its mechanism, and the evolution of moisture in concrete under alternating drying-wetting cycles, were investigated using an environmental moisture simulation chamber. Chloride diffusion tests were also performed to evaluate the effects of different dry-wet ratios and numbers of drying-wetting cycles on the chloride diffusion depth, chloride content and saturation in concrete. The microstructure of concrete was studied and analyzed using XRD, SEM and MIP technology. The findings showed that the saturation of concrete decreased rapidly with increasing number of wet-dry cycles and finally stabilized. Under different alternating moisture conditions, the saturation of concrete was greater, especially when the wetting time was longer. Additionally, in areas near the surface of concrete (depths of 2 mm-6 mm), the chloride content was proportional to the number of wet-dry cycles. In the interior of concrete (depth > 6 mm), when the number of drying-wetting cycles was larger, the chloride concentration was smaller. However, as the number of wet-dry cycles increased, this led to the decalcification of C-S-H gels, which resulted in the reduction in the number of C-S-H reticular gels with good crystallinity. A pore analysis showed that the cumulative pore size and the maximum probability pore size of concrete gradually increased with increasing number of wet-dry cycles, the deterioration of pore structure was more obvious, and the compactness of concrete gradually decreased, which accelerated the migration of chloride in the matrix. Overall, this study can provide reliable and valuable test data for the development and design of high-performance concrete for applications in atmospheric marine tidal zones

    The Effect of Prohibitins on Mitochondrial Function during <i>Octopus tankahkeei</i> Spermiogenesis

    No full text
    Mitochondria are essential for spermiogenesis. Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins that act as scaffolds in the inner mitochondrial membrane. In this study, we analyzed the molecular structure and dynamic expression characteristics of Ot-PHBs, observed the colocalization of Ot-PHB1 with mitochondria and polyubiquitin, and studied the effect of phb1 knockdown on mitochondrial DNA (mtDNA) content, reactive oxygen species (ROS) levels, and apoptosis-related gene expression in spermatids. Our aim was to explore the effect of Ot-PHBs on mitochondrial function during the spermiogenesis of Octopus tankahkeei (O. tankahkeei), an economically important species in China. The predicted Ot-PHB1/PHB2 proteins contained an N-terminal transmembrane, a stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin domain), and a C-terminal coiled-coil domain. Ot-phb1/phb2 mRNA were widely expressed in the different tissues, with elevated expression in the testis. Further, Ot-PHB1 and Ot-PHB2 were highly colocalized, suggesting that they may function primarily as an Ot-PHB compiex in O. tankahkeei. Ot-PHB1 proteins were mainly expressed and localized in mitochondria during spermiogenesis, implying that their function may be localized to the mitochondria. In addition, Ot-PHB1 was colocalized with polyubiquitin during spermiogenesis, suggesting that it may be a polyubiquitin substrate that regulates mitochondrial ubiquitination during spermiogenesis to ensure mitochondrial quality. To further investigate the effect of Ot-PHBs on mitochondrial function, we knocked down Ot-phb1 and observed a decrease in mtDNA content, along with increases in ROS levels and the expressions of mitochondria-induced apoptosis-related genes bax, bcl2, and caspase-3 mRNA. These findings indicate that PHBs might influence mitochondrial function by maintaining mtDNA content and stabilizing ROS levels; in addition, PHBs might affect spermatocyte survival by regulating mitochondria-induced apoptosis during spermiogenesis in O. tankahkeei

    Numerical model of the effect of water vapor environment on the chloride transport in concrete

    No full text
    Chloride ions are known as one of the most crucial factors for rebar corrosion in reinforced concrete (RC) structures exposed to marine environments under drying-wetting cycles. In this condition, the chloride ion content in unsaturated concrete will change under the coupled effect of diffusion and capillary suction. This study simulates the atmosphere zone of the marine environment to explore the law of the chloride transmission behavior under the context of constant temperature and humidity. To analyze the effect of different drying-wetting ratios on the chloride ion profile in the concrete by conducting the dry-wet cycle tests. It is found that the most unfavorable drying-wetting ratios for RC structures in this study is 1:5.5. A finite element numerical model of chloride ion transmission based on Fick\u27s â…¡ law was established by COMSOL Multiphysics. It can be used to predict the range of concrete surface chloride ion concentration, and dynamic change of the distribution of chloride ion concentration inside the RC structures under different drying-wetting cycles over time. The comparison of experiment data and simulation results verify that the chloride diffusion prediction model has a good correlation

    An experimental study on the influence of continuous ambient humidity conditions on relative humidity changes, chloride diffusion and microstructure in concrete

    No full text
    Most engineering structures are exposed to various harsh environments, such as temperature fluctuations and humidity cycles, simultaneously. Additionally, moisture transfer and corrosive ion transport in concrete are driven by humidity gradients. Therefore, studying Chloride transport in concrete under constant humidity conditions is a meaningful research project. In this work, a new experimental setup was designed, and the Chloride diffusion behavior of concrete under a continuous humidity environment and NaCl immersion was investigated. Meanwhile, to accurately evaluate the internal humidity of concrete, humidity sensors were applied to the concrete. Additionally, the impacts of the water-binder ratio (w/b) and ambient humidity on the humidity diffusion coefficient, free Chloride content and bound Chloride content in concrete were evaluated. The microstructure was characterized by scanning electron microscopy, X-ray diffraction and mercury intrusion porosimetry. The results show that the content of free Chloride increases with an increasing w/b ratio. The humidity diffusion coefficient of concrete during water absorption (continuous high humidity environment) is significantly higher than that during water loss (continuous dry environment). Furthermore, under the drying condition, the Chloride content and the humidity diffusion coefficient on the concrete surface gradually increased, while during the wetting procedure, the Chloride content inside the concrete increased, and the humidity diffusion coefficient gradually decreased. However, the bound Chloride content inside the concrete is not affected by the humidity level in the environment. In the wetting environment, the calcium hydroxide in the matrix is gradually consumed, and the Chloride diffuses to the matrix to form more Friedel\u27s salt and calcium carbonate. Moreover, lowering the w/b ratio or increasing the ambient humidity can enhance the formation of more hydrated compounds (C–S–H gel), which can reduce the total porosity and can also improve the ability of concrete to resist Chloride diffusion. Overall, this study provides a better understanding of and insight into the design and maintenance of seaside RC infrastructures

    Mitochondrial Features and Expressions of MFN2 and DRP1 during Spermiogenesis in <i>Phascolosoma esculenta</i>

    No full text
    Mitochondria can fuse or divide, a phenomenon known as mitochondrial dynamics, and their distribution within a cell changes according to the physiological status of the cell. However, the functions of mitochondrial dynamics during spermatogenesis in animals other than mammals and fruit flies are poorly understood. In this study, we analyzed mitochondrial distribution and morphology during spermiogenesis in Sipuncula (Phascolosoma esculenta) and investigated the expression dynamics of mitochondrial fusion-related protein MFN2 and fission-related protein DRP1 during spermiogenesis. The mitochondria, which were elliptic with abundant lamellar cristae, were mainly localized near the nucleus and distributed unilaterally in cells during most stages of spermiogenesis. Their major axis length, average diameter, cross-sectional area, and volume are significantly changed during spermiogenesis. mfn2 and drp1 mRNA and proteins were most highly expressed in coelomic fluid, a spermatid development site for male P. esculenta, and highly expressed in the breeding stage compared to in the non-breeding stage. MFN2 and DRP1 expression levels were higher in components with many spermatids than in spermatid-free components. Immunofluorescence revealed that MFN2 and DRP1 were consistently expressed and that MFN2 co-localizes with mitochondria during spermiogenesis. The results provide evidence for an important role of mitochondrial dynamics during spermiogenesis from morphology and molecular biology in P. esculenta, broadening insights into the role of mitochondrial dynamics in animal spermiogenesis

    Molecular Cloning of Dynein Heavy Chain and the Effect of Dynein Inhibition on the Testicular Function of Portunus trituberculatus

    No full text
    Dynein is a motor protein with multiple transport functions. However, dynein&rsquo;s role in crustacean testis is still unknown. We cloned the full-length cDNA of cytoplasmic dynein heavy chain (Pt-dhc) gene and its structure was analyzed. Its expression level was highest in testis. We injected the dynein inhibitor sodium orthovanadate (SOV) into the crab. The distribution of Portunus trituberculatus dynein heavy chain (Pt-DHC) in mature sperm was detected by immunofluorescence. The apoptosis of spermatids was detected using a TUNEL kit; gene expression in testis was detected by fluorescence quantitative PCR (qPCR). The expression of immune-related factors in the testis were detected by an enzyme activity kit. The results showed that the distribution of Pt-DHC was abnormal after SOV injection, indicating that the function of dynein was successfully inhibited. Apoptosis-related genes p53 and caspase-3, and antioxidant stress genes HSP70 and NOS were significantly decreased, and anti-apoptosis gene bcl-2 was significantly increased. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) were significantly decreased. The results showed that there was no apoptosis in testicular cells after dynein function was inhibited, but the cell function was disordered. This study laid a theoretical foundation for the further study of apoptosis in testis and the function of dynein in testis and breeding of P. trituberculatus

    Characterization of Mitochondrial Prohibitin in Opsariichthys bidens and Its Potential Functions in Spermatogenesis

    No full text
    Spermatogenesis is the intricate and coordinated process by which spermatogonia develop into haploid differentiated spermatozoa. Mitochondria are essential for spermatogenesis, and prohibitin (PHB) is closely associated with mitochondrial structure and function during spermatogenesis. Although PHB has been implicated in spermatogenesis in some taxa, its roles in Opsariichthys bidens have not been determined. In this study, the expression patterns and potential functions of PHB in spermatogenesis in O. bidens were characterized using histological microscopic observations, PCR cloning, real-time quantitative PCR (qPCR), Western blotting (WB) and immunofluorescence (IF). The full-length cDNA of Ob-phb was 1500 bp encoding 271 amino acids. A sequence alignment demonstrated that the PHB protein is conserved among different animals. qPCR revealed that phb mRNA is widely distributed in O. bidens and highly expressed in the testes at stages IV and V. WB revealed that Ob-PHB is located in the mitochondria of testes. IF revealed the colocalization of PHB signals and mitochondria. Signals were detected around nuclei in spermatogonia and spermatocytes, gradually moving to the tail region during spermiogenesis, and finally aggregating in the midpiece. These results indicate that Ob-PHB was expressed in the mitochondria during spermatogenesis. In addition, this study proposed Ob-PHB may participate in the degradation of mitochondria and cell differentiation during spermatogenesis

    Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives

    No full text
    Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed
    corecore