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Abstract
In this paper, we introduce a proximal point iterative algorithm with general errors for
monotone mappings in Banach spaces. We prove that the proposed algorithm
converges strongly to a proximal point for monotone mappings. Our theorems in this
paper improve and unify most of the results that have been proposed for this
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1 Introduction
Let E be a real Banach space with dual E∗. A normalized duality mapping J : E → E∗ is
defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. It is well known that
E is smooth if and only if J is single-valued and if E is uniformly smooth then J is uni-
formly continuous on bounded subsets of E. Moreover, if E is reflexive and strictly convex
Banach space with a strictly convex dual then J– is single-valued, one-to-one, surjective,
uniformly continuous on bounded subsets and it is the duality mapping from E∗ into E;
here JJ– = IE∗ and JJ– = IE . D(A) denotes the domain of A.
A mapping A :D(A)⊂ E → E∗ is said to be monotone if for each x, y ∈ D(A), the follow-

ing inequality holds:

〈x – y,Ax –Ay〉 ≥ .

The class of monotonemappings is one of the most important classes of mappings among
nonlinear mappings. The mapping A is said to be maximal monotone if it is not properly
contained in any othermonotone operator. In the past several decades, many authors have
been devoting to the studies on the existence and convergence of zero points for maximal
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monotonemappings. A variety of problems, for example, convex optimization, linear pro-
gramming, monotone inclusions, and elliptic differential equations can be formulated as
finding a zero of maximal monotone operators. The proximal point algorithm is recog-
nized as a powerful and successful algorithm in finding a solution of maximal monotone
operators. In Hilbert spaces, many authors have studied monotone mappings by the vis-
cosity approximation methods and obtained a series of good results, see [–] and the
references therein.
Let C be closed convex subset of Banach space E. A mapping A : C → E is called accre-

tive if there exists j(x – y) ∈ J(x – y) such that

〈
j(x – y),Ax –Ay

〉 ≥ .

The mapping A is called m-accretive if it is accretive and R(I + rA), the range of (I + rA),
is E for all r > ; and an accretive mapping A is said to satisfy the range condition if

D(A) ⊆ C ⊆
⋂
r>

R(I + rA), (.)

for some nonempty, closed, and convex subset C of a real Banach space E (see [, , ]).
Denote the zero set of A by

A–() =
{
z ∈D(A) :  ∈ Az

}
.

The accretivemappings andmonotonemappings have different natures in Banach spaces,
these being more general than Hilbert spaces. For solving the original problem of finding
a solution to the inclusion  ∈ Az, Rockafellar [] introduced the following algorithm:

zk + ek ∈ zk+ + ckAzk+, (.)

where {ek} is a sequence of errors. Rockafellar obtained the weak convergence of the algo-
rithm (.).
When A is maximal monotonemapping in Hilbert spaces, Xu [] proposed the follow-

ing regularization for the proximal algorithm:

zk+ = JAck
(
λku + ( – λk)zk + ek

)
,

where JAck = (I + ckA)– is the resolvent of A, converge strongly to a point in A–().
Recently Yao and Shahzad [] proved that sequences generated from the method of

resolvent given by

zk+ = γkzk + δkJAck (zk) + λkek ,

where JAck = (I + ckA)– is the resolvent of A, converge strongly to a point in A–().
On the other hand, with regard to a finite family of m-accretive mappings, Zegeye and

Shahzad [] proved that under appropriate conditions in Hilbert spaces, an iterative pro-
cess of Halpern type defined by

xn+ = αnu + ( – αn)Srnxn, n≥ ,
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where Sr = aI +aJr +aJr + · · ·+aNJNr with J ir = (I + rAi)– for ai ∈ (, ), {i = , , , . . . ,N}
and

∑N
i= ai = , for {Ai, i = , , . . .N} accretive mappings, converge strongly to a point in⋂N

i=A–
i (). Very recently, Kimura and Takahashi [] defined the mapping in Banach

space:

yi = J∗
(
αiJxi + ( – αi)JSixi

)
,

where {Si} are sequences of nonexpansive mappings of C into itself. Then {Jyi} converges
weakly and {Jxi – JSixi} converges strongly to  if ϕ(x, yi) ≤ ϕ(x,xi) for all i ∈N.
Motivated and inspired by the above results, our concern now is the following: Is it pos-

sible to construct a new sequence with general errors in Banach spaces which converges
strongly to a zero of monotone operators? Let C be a nonempty, closed, and convex subset
of a uniformly smooth strictly convex real Banach space E. LetA : C → E∗ be a continuous
monotone mapping satisfying the range condition (.) with A–() �=∅. It is our purpose
in this paper to introduce an iterative scheme (two-step iterative scheme) which converges
strongly to a zero of a monotone operators in Banach spaces. Our theorems presented in
this paper improve and extend the corresponding results of Yao and Shahzad [], and
Zegeye and Shahzad [] and some other results in this direction.

2 Preliminaries
Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly convex real
Banach space E with dual E∗. Amonotonemapping A is said to satisfy the range condition
if we have

D(A) ⊆ C ⊆
⋂
r>

J–R(J + rA) (.)

for some nonempty, closed, and convex subsetC of a smooth, strictly convex, and reflexive
Banach spaces E (see [, , ]). In the sequel, the resolvent of a monotone mapping
A : C → E∗ shall be denoted by SAr = (J + rA)–J for r > . It is well known that the fixed
points of the operator SAr are the zeros of the monotone mapping A, denote F := A–().
We recall that a Banach space E has the Kadee-Klee property if for any sequence {xn} ⊂ E
and x ∈ E with xn ⇀ x and ‖xn‖ → ‖x‖, xn → x as n → ∞. We note that every uniformly
convex Banach space enjoys the Kadee-Klee property.

Lemma . [] Let C be a nonempty, closed, and convex subset of a uniformly smooth
strictly convex real Banach space E with dual E∗. A ⊂ E × E∗ is a monotone mapping sat-
isfying (.). Let SAr be the resolvent of A for r ⊂ (,∞). If {xn} is a bounded sequence of C
such that SAr xn ⇀ z, then z ∈ A–().

Lemma . For λ,μ > , the identity

SAλ x = SAμ

(
μ

λ
Jx +

(
 –

μ

λ

)
JSAλ x

)

holds.
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Proof By the definition of the operator SAr , the identity holds. �

Let E be a smooth Banach space with dual E∗. Let the Lyapunov function ϕ : E×E → R,
introduced by Alber [], be defined by

ϕ(y,x) = ‖y‖ – 〈y, Jx〉 + ‖x‖ ∀x, y ∈ E.

Obviously, by the definition of the mapping J , ϕ(·, ·)≥ .

Lemma. [] Let E be a smooth and strictly convex Banach space, andC be a nonempty,
closed, and convex subset of E. Let A ⊂ E × E∗ be a monotone mapping satisfying (.),
A–() be nonempty and SAr be the resolvent of A for some r > . Then, for each r > , we
have

ϕ
(
p,SAr x

)
+ ϕ

(
SAr x,x

) ≤ ϕ(p,x) ∀p ∈ A–(),x ∈ C.

Let E be a reflexive, strictly convex, and smooth Banach space, and let C be a nonempty,
closed, and convex subset of E. The generalized projection mapping, introduced by Alber
[], is a mapping �C : E → C that assigns an arbitrary point x ∈ E to the minimizer, x̄ =
�Cx, where x̄ is the solution to the minimization problem

ϕ(x, x̄) =min
{
ϕ(y,x), y ∈ C

}
.

Lemma . [] Let C be a nonempty, closed, and convex subset of a uniformly smooth
strictly convex real reflexive Banach space E. Let x ∈ E, then, ∀y ∈ C,

ϕ(y,�Cx) + ϕ(�Cx,x)≤ ϕ(y,x).

Lemma . [] Let C be a nonempty closed and convex subset of a real smooth Banach
space E.Amapping �C : E → C is a generalized projection. Let x ∈ E, then x =�Cx if and
only if

〈z – x, Jx – Jx〉 ≤ , ∀z ∈ C.

We make use of the function V : E × E∗ → R defined by V (x,x∗) = ϕ(x, J–x∗). That is
V (x,x∗) = ‖x‖ – 〈x,x∗〉 + ‖x∗‖ for all x ∈ E and x∗ ∈ E∗.

Lemma . [] Let E be a reflexive, strictly convex, and smooth real Banach space with
dual E∗. Then

V
(
x,x∗) + 

〈
J–x∗ – x, y∗〉 ≤ V

(
x,x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+ ≤ ( – θn)an + σn, n ≥ ,
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where {θn} is a sequence in (, ) and {σn} is a real sequence such that
(i)

∑∞
n= θn =∞;

(ii) lim supn→∞
σn
θn

≤  or
∑∞

n= σn < ∞.
Then limn→∞ an = .

Lemma . [] Let E be a uniformly convex, and smooth real Banach space with
dual E∗, and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded and
ϕ(xn, yn) →  as n→ ∞, then xn – yn →  as n→ ∞.

Lemma . [] Let E be a uniformly convex and smooth real Banach space and BR()
be a closed ball of E. Then there exists a continuous strictly increasing convex function
g : [,∞) → [,∞) with g() =  such that

‖αx + αx + · · · + αNxN‖ ≤
N∑
i=

αi‖xi‖ – αiαjg
(‖xi – xj‖

)
,

for αi ∈ (, ) such that
∑N

i= αi =  and xi ∈ BR() := {x ∈ E : ‖x‖ ≤ R} for some R > .

3 Main results
In this section, we introduce our algorithm and state our main result.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys the Kadee-Klee property. Let A : C → E∗ be
a continuous monotone mapping satisfying (.), and u ∈ C be a constant. Assume that
F := A–() �=∅, for x,u ∈ C arbitrarily, let the sequence {xn} be generated iteratively by

⎧⎨
⎩
yn =�C(J–(λnJxn + ( – λn)JSAc xn)),

xn+ = J–(αnJu + βnJxn + γnJSAc yn + εnJen),
(.)

where c ⊂ (,∞), {en} ∈ E is an error, λn ∈ [, ], {αn}, {βn}, {γn}, {εn} are sequences of
nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) lim supn→∞ λn = ;
(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,

then the sequence (.) converges strongly to x̄ =�Fu.

Proof From the Lemma . and Kamimura et al. [], we see that A–() is closed and
convex. Thus�Fu is well defined. First we prove that {xn} is bounded. Take p ∈ F := A–(),
then from (.) and Lemmas ., ., and the property of ϕ, we have

ϕ(p, yn) = ϕ
(
p,�C

(
J–

(
λnJxn + ( – λn)JSAc xn

)))
≤ ϕ

(
p, J–

(
λnJxn + ( – λn)JSAc xn

))
= ‖p‖ – 

〈
p, ( – λn)JSAc xn + λnJxn

〉
+

∥∥( – λn)JSAc xn + λnJxn
∥∥

≤ ‖p‖ – ( – λn)
〈
p, JSAc xn

〉
– λn〈p, Jxn〉

+ ( – λn)
∥∥JSAc xn∥∥ + λn‖Jxn‖

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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≤ ( – λn)ϕ
(
p,SAc xn

)
+ λnϕ(p,xn)

≤ ( – λn)ϕ(p,xn) + λnϕ(p,xn) = ϕ(p,xn). (.)

For n≥ , by using the definition of ϕ and Lemma . we have from (.)

ϕ(p,xn+) = ϕ
(
p, J–

(
αnJu + βnJxn + γnJSAc yn + εnJen

))
= ‖p‖ – 

〈
p,αnJu + βnJxn + γnJSAc yn + εnJen

〉
+

∥∥αnJu + βnJxn + γnJSAc yn + εnJen
∥∥

≤ ‖p‖ – αn〈p, Ju〉 – βn〈p, Jxn〉 – γn
〈
p, JSAc yn

〉
– εn〈p, Jen〉 + αn‖u‖

+ βn‖xn‖ + γn
∥∥SAc yn∥∥ + εn‖en‖

= αnϕ(p,u) + βnϕ(p,xn) + γnϕ
(
p,SAc yn

)
+ εnϕ(p, en)

≤ αnϕ(p,u) + (βn + γn)ϕ(p,xn) + εnϕ(p, en). (.)

Since lim supn→∞ ‖en‖ = , assume that supϕ(p, en) ≤ M is a real nonnegative constant,
then by induction, we have

ϕ(p,xn+) ≤max
{
ϕ(p,u),ϕ(p,x),M

}
, ∀n≥ ,

which implies that {xn} is bounded. Therefore, we see that {SAc xn}, {SAc yn}, and {yn} are
bounded. Next we show that ϕ(xn,xn+) → .
Because the sequence {xn} is bounded, by the reflexivity of E, there exists a subsequence

{xnj} of {xn} and p ∈ C such that xnj → p ∈ C weakly. Denote x∗ = �Cu, then x∗ ∈ C is
the unique element that satisfies infx∈C ϕ(x,u) = ϕ(x∗,u). By using the weakly lower semi-
continuity of the norm on E, we get

ϕ
(
x∗,u

) ≤ ϕ(p,u) ≤ lim inf
j→∞ϕ(xnj ,u)

≤ lim sup
j→∞

ϕ(xnj ,u) ≤ inf
x∈C ϕ(x,u) = ϕ

(
x∗,u

)
, (.)

which implies that

lim
j→∞ϕ(xnj ,u) = ϕ

(
x∗,u

)
= ϕ(p,u) = inf

x∈C ϕ(x,u). (.)

Thus, from (.) and Lemma ., we have

〈
z – x∗, Jx∗ – Ju

〉 ≥ , ∀z ∈ C, (.)

〈z – p, Jp – Ju〉 ≥ , ∀z ∈ C. (.)

Putting z := p in (.) and z := x∗ in (.), we get

〈
p – x∗, Jx∗ – Ju

〉 ≥ , ∀z ∈ C, (.)
〈
x∗ – p, Jp – Ju

〉 ≥ , ∀z ∈ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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Adding (.) and (.) we have 〈x∗ – p, Jp – Jx∗〉 ≥ , i.e. 〈x∗ – p, Jx∗ – Jp〉 ≤ . By using
the fact that J is monotone we get 〈x∗ –p, Jx∗ – Jp〉 = . Since strict convexity of E implies
that J is strictly monotone, we have p = x∗. Consequently, xnj → x∗ weakly.
Furthermore, by the definition of ϕ and (.), we have

lim
n→∞

(‖xn‖ – 〈xn, Ju〉 + ‖u‖) = ∥∥x∗∥∥ – 
〈
x∗, Ju

〉
+ ‖u‖,

which shows that limn→∞ ‖xn‖ = ‖x∗‖. In view of the Kadee-Klee property of E, we have
‖xn – x∗‖ → . Thus, ϕ(xn,xn+)→ .
Now we show that x∗ ∈ A–(). By using the definition of ϕ and Lemma . and

Lemma ., we get

ϕ(p,xn+) = ϕ
(
p, J–

(
αnJu + βnJxn + γnJSAc yn + εnJen

))
≤ ‖p‖ – 

〈
p,αnJu + βnJxn + γnJSAc yn + εnJen

〉
+

∥∥αnJu + βnJxn + γnJSAc yn + εnJen
∥∥

≤ ‖p‖ – αn〈p, Ju〉 – βn〈p, Jxn〉 – γn
〈
p, JSAc yn

〉
– εn〈p, Jen〉 + αn‖u‖

+ βn‖xn‖ + γn
∥∥SAc yn∥∥ + εn‖en‖ – βnγng

(∥∥Jxn – JSAc yn
∥∥)

= αnϕ(p,u) + ( – αn – εn)ϕ(p,xn) + εnϕ(p, en) – βnγng
(∥∥Jxn – JSAc yn

∥∥)
.

Because xn → x∗, ϕ(p,xn) is convergent, and noticing the conditions (i), (ii) and (iii), we get

g
(∥∥Jxn – JSAc yn

∥∥) → . (.)

The property of the function g implies that

Jxn – JSAc yn → , n→ ∞. (.)

Thus, since J– is uniformly continuous on bounded sets, we obtain

xn – SAc yn → , n→ ∞. (.)

From Lemma ., the property of ϕ, and the condition (ii) we have

ϕ(xn, yn) = ϕ
(
xn,�C

(
J–

(
λnJxn + ( – λn)JSAc xn

)))
≤ ϕ

(
xn, J–

(
λnJxn + ( – λn)JSAc xn

))
≤ ( – λn)ϕ

(
xn,SAc xn

)
+ λnϕ(xn,xn)→ . (.)

Using Lemma ., we get xn – yn → , furthermore yn → x∗, and from (.) we get yn –
SAc yn →  and from Lemma ., we obtain x∗ ∈ F = A–().
Now take x̄ =�Fu, then x̄ ∈ F , by the Lemma . and Lemma ., then we have

ϕ(x̄,u) = V (x̄, Ju)

≤ V
(
x̄, Ju – (Ju – Jx̄)

)
– 

〈
u – x̄, –(Ju – Jx̄)

〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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= ϕ(x̄, x̄) + 〈u – x̄, Ju – Jx̄〉
= 〈u – x̄, Ju – Jx̄〉 ≤ . (.)

Since ϕ(·, ·)≥ , so we have ϕ(x̄,u) = .
Furthermore, from (.) we have

ϕ(x̄,xn+) ≤ (βn + γn)ϕ(x̄,xn) + αnϕ(x̄,u) + εnϕ(x̄, en)

≤ ( – αn – εn)ϕ(x̄,xn) + (αn + εn)
(
ϕ(x̄,u) + ϕ(x̄, en)

)
. (.)

Notice the conditions (i) and (iii), from (.), by the Lemma . we have ϕ(x̄,xn+) → 
as n → ∞. Consequently, from Lemma . we have xn → x̄. In fact, we get x∗ = x̄. The
proof is complete. �

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys the Kadee-Klee property. Let A : C → E∗ be
a continuous monotone mapping satisfying (.), and u ∈ C be a constant. Assume that
F := A–() �=∅, let xn be a sequence generated by x ∈ C

xn+ = J–
(
αnJu + βnJxn + γnJSAc xn + εnJen

)
, (.)

where {en} ∈ E is an error, {αn}, {βn}, {γn}, {εn} are sequences of nonnegative real numbers
in [, ] and

(i) αn + βn + γn + εn = , n ≥ ;
(ii) limn→∞ αn = ,

∑∞
n= αn =∞;

(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,
then the sequence converges strongly to �Fu.

Proof Putting λn =  in Theorem ., we obtain the result. �

We note the method of the proof of Theorem . provides a convergence theorem for a
finite family of continuous monotone mappings. In fact, we have the following theorem.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys the Kadee-Klee property. Let Ai : C → E∗ for
i = , , . . . ,N be continuous monotone mappings satisfying (.), and u ∈ C be a constant.
Assume that F :=

⋂N
i=A–

i () �=∅, for x,u ∈ C arbitrarily, let the sequence {xn} be gener-
ated iteratively by

⎧⎨
⎩
yn =�C(J–(λnJxn + ( – λn)

∑N
i= μiJS

Ai
c xn)),

xn+ = J–(αnJu + βnJxn + γn
∑N

i= σiJS
Ai
c yn + εnJen),

(.)

where c ⊂ (,∞), {en} ∈ E is an error, λn ∈ [, ], λn ∈ [, ], {αn}, {βn}, {γn}, {εn} are se-
quences of nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ ,
∑N

i= σi = ,
∑N

i= μi = ; μi ≥ , σi ≥ ;
(ii) lim supn→∞ λn = ; limn→∞ αn = ,

∑∞
n= αn =∞;

(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,
then the sequence converges strongly to x̄ =�Fu.

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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If in Theorem . and Theorem . we put u≡ , we have the following corollaries.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly smooth
strictly convex real Banach space E which also enjoys the Kadee-Klee property. Let A : C →
E∗ be a continuous monotone mapping satisfying (.), and u ∈ C be a constant. Assume
that F := A–() �=∅, for x ∈ C arbitrarily, let the sequence {xn} be generated iteratively by

⎧⎨
⎩
yn =�C(J–(λnJxn + ( – λn)JSAc xn)),

xn+ = J–(βnJxn + γnJSAc yn + εnJen),
(.)

where c⊂ (,∞), {en} ∈ E is an error λn ∈ [, ], {βn}, {γn}, {εn} be sequences of nonnegative
real numbers in [, ], and

(i) βn + γn + εn = , n≥ ;
(ii) lim supn→∞ λn = ;
(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to x̄ =�F ().

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly smooth
strictly convex real Banach space E which also enjoys the Kadee-Klee property. Let A : C →
E∗ be a continuous monotone mapping satisfying (.). Assume that F := A–() �=∅, let xn
be a sequence generated by

xn+ = J–
(
βnJxn + γnJSAc xn + εnJen

)
, (.)

x ∈ C, where c >  and {en} ∈ E is an error, {βn}, {γn}, {εn} are sequences of nonnegative
real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ ;
(ii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to �F ().

If E is a Hilbert space, then E is a uniformly convex and smooth real Banach space. In
this case, J = I , and ϕ(x, y) = ‖x– y‖, and�C = PC , the projectionmapping from E on C. It
is well known that PC and SAc are nonexpansive. Furthermore, (.) reduces to (.). Thus
the following theorems hold.

Theorem. Let C be a nonempty, closed,and convex subset of a uniformly smooth strictly
convex real Hilbert space E which also enjoys the Kadee-Klee property. Let A : C → E∗

be a continuous monotone mapping satisfying (.), and f : C → C be a contraction with
a contraction coefficient ρ ∈ (, ). Assume that F := A–() �= ∅, let the sequence {xn} be
generated iteratively by

⎧⎨
⎩
yn = PC(λnxn + ( – λn)SAc xn),

xn+ = αnf (xn) + βnxn + γnSAc yn + εnen,
(.)

where c >  and {en} ∈ H is an error, SAc = (I + cA)–, and the sequences λn ∈ [, ], {αn},
{βn}, {γn}, {εn} be nonnegative real numbers in [, ] and
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(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii)  < lim infn→∞ λn < lim supn→∞ λn < ;
(iii) lim supn→∞ εn = , and lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to x̄ = PFf (x̄).

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Hilbert space E which also enjoys the Kadee-Klee property. Let A : C → E∗ be a
continuous monotone mapping satisfying (.), and f : C → C be a contraction with a con-
traction coefficient ρ ∈ (, ). Assume that F := A–() �=∅, let xn be a sequence generated
by x ∈ C

xn+ = αnf (xn) + βnxn + γnSAc xn + εnen, (.)

where c >  and {en} ∈H is an error, SAc = (I + cA)–, and the sequences {αn}, {βn}, {γn}, {εn}
are nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) lim supn→∞ εn = , and lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to x̄ = PFf (x̄).

If in Theorem . and Theorem . we put f :≡ u constant, we have the following corol-
laries.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly smooth
strictly convex real Hilbert space E which also enjoys the Kadee-Klee property. Let A : C →
E∗ be a continuous monotone mapping satisfying (.), and u ∈ C be a constant. Assume
that F := A–() �=∅, let the sequence {xn} be generated iteratively by

⎧⎨
⎩
yn = PC(λnxn + ( – λn)SAc xn),

xn+ = αnu + βnxn + γnSAc γnyn + εnen,
(.)

where c >  and {en} ∈ H is an error, SAc = (I + cA)–, and the sequences λn ∈ [, ], {αn},
{βn}, {γn}, {εn} be nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii)  < lim infn→∞ λn < lim supn→∞ λn < ;
(iii) lim supn→∞ εn = , and lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to x̄ = PFu.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Hilbert space E which also enjoys the Kadee-Klee property. Let A : C → E∗ be
a continuous monotone mapping satisfying (.), and u ∈ C be a constant. Assume that
F := A–() �=∅, let xn be a sequence generated by x ∈ C

xn+ = αnu + βnxn + γnSAc xn + εnen, (.)

where c >  and {en} ∈H is an error, SAc = (I + cA)–, and the sequences {αn}, {βn}, {γn}, {εn}
are nonnegative real numbers in [, ] and

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) lim supn→∞ εn = , and lim supn→∞ ‖en‖ = ,

then the sequence converges strongly to x̄ = PFu.

Remark . In fact, ifA is amaximalmonotonemapping, then all the above results hold.

4 Applications
In this section, we study the problem of finding a minimizer of a continuously Fréchet
differentiable convex functional in Banach spaces. Let g be continuously Fréchet differen-
tiable convex functionals such that the gradient of g (∇g|C) are continuous andmonotone.
Denote B :=∇g , then the following theorem holds.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys the Kadee-Klee property. Let g be continu-
ously Fréchet differentiable convex functionals such that the gradient of g , B := ∇g , is con-
tinuous, monotone, and F := argminy∈C g(y) := {z ∈ C : g(z) = miny∈C g(y)} �= ∅. Let u ∈ C
be a constant, for x,u ∈ C arbitrarily, and the sequence {xn} be generated iteratively by

⎧⎨
⎩
yn =�C(J–(λnJxn + ( – λn)JSBc un)),

xn+ = J–(αnJu + βnJxn + γnJSBc yn + εnJen),
(.)

where c ⊂ (,∞), {en} ∈ E is an error, λn ∈ [, ], {αn}, {βn}, {γn}, {εn} are sequences of
nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) lim supn→∞ λn = ;
(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,

then the sequences{xn}, {un} converge strongly to x̄ =�Fu.

In addition, we can extend it to the equilibrium problem for a bifunction φ : C × C →
R where C is a nonempty, closed, and convex subset of a smoothly, strictly convex, and
reflexive real Banach space E with dual E∗. The problem is to find x ∈ C such that φ(x, y) ≥
 for all y ∈ C and the set of solutions if denoted by EP(φ). The mapping Trn : E → C is
defined as follows: for x ∈ E,

Trn (x) :=
{
z ∈ C : φ(z, y) +


rn

〈
j(y – z), z – x

〉 ≥ ,∀y ∈ C
}
.

It is proved in [] that {Trn} is single-valued and nonexpansive. Furthermore, we see that
F(Trn ) = EP(φ) is closed and convex if the bifunction φ satisfies (A) φ(x,x) = , ∀x ∈ C,
(A) φ(x, y) + φ(y,x) ≤ , ∀x, y ∈ C, (A) for each x, y, z ∈ C, limt→ φ(tz + ( – t)x, y) ≤
φ(x, y), and (A) for each x ∈ C, y �→ φ(x, y) is convex and lower semicontinuous.
The following theorems are connected with the problem of obtaining a common ele-

ment of the sets of zeros of a monotone operator and an equilibrium problem.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys theKadee-Klee property.Let φ be a bifunction
from C → R satisfying (A)-(A), and A : C → E∗ be a continuous monotone mapping

http://www.journalofinequalitiesandapplications.com/content/2014/1/484
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satisfying (.), and u ∈ C be a constant.Assume that F := A–()∩EP(φ) �=∅, for x,u ∈ C
arbitrarily, let the sequence {xn} be generated iteratively by

⎧⎪⎪⎨
⎪⎪⎩

φ(un, y) + 
rn 〈j(y – un),un – xn〉 ≥ , ∀y ∈ C,

yn =�C(J–(λnJun + ( – λn)JSAc un)),

xn+ = J–(αnJu + βnJxn + γnJSAc yn + εnJen),

(.)

where c ⊂ (,∞), {en} ∈ E is an error, λn ∈ [, ], {αn}, {βn}, {γn}, {εn} are sequences of
nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ , limn→∞ αn = ,
∑∞

n= αn =∞;
(ii) lim supn→∞ λn = ;
(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,

then the sequences {xn}, {un} converge strongly to x̄ =�Fu.

Theorem. Let C be a nonempty, closed, and convex subset of a uniformly smooth strictly
convex real Banach space E which also enjoys the Kadee-Klee property. Let φ be a bifunc-
tion from C → R satisfying (A)-(A), A : C → E∗ be a continuous monotone mapping sat-
isfying (.), and u ∈ C be a constant. Assume that F := A–() ∩ EP(φ) �= ∅, for x,u ∈ C
arbitrarily, let the sequence {xn} be generated iteratively by

⎧⎨
⎩

φ(un, y) + 
rn 〈j(y – un),un – xn〉 ≥ , ∀y ∈ C,

xn+ = J–(αnJu + βnJxn + γnJSAc un + εnJen),
(.)

where c ⊂ (,∞), {en} ∈ E is an error, λn ∈ [, ], {αn}, {βn}, {γn}, {εn} are sequences of
nonnegative real numbers in [, ] and

(i) αn + βn + γn + εn = , n ≥ ;
(ii) limn→∞ αn = ,

∑∞
n= αn =∞;

(iii) lim supn→∞ εn = , lim supn→∞ ‖en‖ = ,
then the sequences {xn}, {un} converge strongly to x̄ =�Fu.

Remark . Our results extend and unify most of the results that have been proved for
this important class of nonlinear operators. In particular, our theorems provide a conver-
gence scheme to the proximal point of a monotone mapping which improves the results
of Yao and Shahzad [] to Banach spaces, being more general than Hilbert spaces. We
also note that our results complement the results of Zegeye and Shahzad [], which are
convergence results for accretive mappings. At the same time, Theorem . extends the
results of Tang [] and Zegeye and Shahzad [] which have not involved errors.
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