201 research outputs found

    Evaluation of oilseed rape seed yield losses caused by Leptosphaeria biglobosa in central China

    Get PDF
    This document is the Accepted Manuscript version of the following article: Xiang Cai, Yongju Huang, Daohong Jiang, Bruce D. L. Fitt, Guoqing Li, and Long Yang, "Evaluation of oilseed rape seed yield losses caused by Leptosphaeria biglobosa in central China", European Journal of Plant Pathology, first published 9 June 2017. Under embargo. Embargo end date: 9 June 2018. The final publication is available at Springer via: http://dx.doi.org/10.1007/s10658-017-1266-x.Phoma stem canker of oilseed rape (Brassica napus), caused by Leptosphaeria maculans/L. biglobosa is a globally important disease. Severe phoma stem canker symptoms have been observed on winter oilseed rape in China but the seed yield loss caused by this disease remains unknown. In May 2012 and May 2013, 17 and 13 crops were surveyed, respectively, in seven counties of Hubei Province, central China. Stems with phoma stem canker disease symptoms were sampled for pathogen isolation and identification. Only L. biglobosa was identified by culture morphology and species-specific PCR; no L. maculans was found. To evaluate the yield losses, yield components (number of branches per plant, number of pods per plant, 1000-seed weight, number of seeds per pod) were assessed on healthy and diseased plants sampled from crops in four counties and on plants from inoculated pot experiments (plants of three cultivars were inoculated at the green bud stage by injecting L. biglobosa conidia into the stem between the first and second leaf scars). Results of the field surveys showed that diseased plants had 14–61% less branches and 32–83% less pods than healthy plants, respectively. The estimated seed yield loss varied from 10% to 21% and from 13% to 37% in 2012 and 2013, respectively. In the pot experiments, there were no differences in numbers of branches or pods but there were differences in number of seeds per pod between inoculated and control plants. For the three cultivars tested, the inoculated plants had yield losses of 29–56% compared with the control. This study indicates that L. biglobosa could cause substantial seed yield loss in China.Peer reviewedFinal Accepted Versio

    Fault-Tolerant Operation of Bosonic Qubits with Discrete-Variable Ancillae

    Full text link
    Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of path-independent quantum control (GPI). Using these building blocks, we construct a universal set of error-corrected gadgets that tolerate a single photon loss and an arbitrary ancilla fault for four-legged cat qubits. Notably, our construction only requires dispersive coupling between bosonic modes and ancillae, as well as beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is only comprised of a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward scalable and robust quantum computation with bosonic qubits.Comment: 23 pages, 10 figures. Comments are welcom

    ICTV Virus Taxonomy Profile: Chrysoviridae

    Get PDF
    The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5–12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae.Peer reviewe

    50-plus years of fungal viruses

    Get PDF
    AbstractMycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution

    ICTV Virus Taxonomy Profile: Chrysoviridae

    Get PDF
    Members of the family Chrysoviridae are isometric, non-enveloped viruses with segmented, linear, dsRNA genomes. There are 3–7 genomic segments, each of which is individually encapsidated. Chrysoviruses infect fungi, plants and possibly insects, and may cause hypovirulence in their fungal hosts. Chrysoviruses have no known vectors and lack an extracellular phase to their replication cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Chrysoviridae, which is available at ictv.global/report/chrysoviridae.Peer reviewe

    Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea

    Get PDF
    Histone methylation is widely present in animals, plants and fungi, and the methylation modification of histone H3 has important biological functions. Methylation of Lys9 of histone H3 (H3K9) has been proven to regulate chromatin structure, gene silencing, transcriptional activation, plant metabolism and other processes. In this work, we investigated the functions of a H3K9 methyltransferase gene BcDIM5 in Botrytis cinerea, which contains a PreSET domain, a SET domain and a PostSET domain. Characterization of BcDIM5 knockout transformants showed that the hyphal growth rate and production of conidiophores and sclerotia were significantly reduced, while complementary transformation of BcDIM5 could restore the phenotypes to the levels of wild type. Pathogenicity assays revealed that BcDIM5 was essential for full virulence of B. cinerea. BcDIM5 knockout transformants exhibited decreased virulence, down-regulated expression of some pathogenic genes and drastically decreased H3K9 trimethylation level. However, knockout transformants of other two genes heterochromatin protein 1 (HP1) BcHP1 and DNA methyltransferase (DIM2) BcDIM2 did not exhibit significant change in the growth phenotype and virulence compared with the wild type. Our results indicate that H3K9 methyltransferase BcDIM5 is required for H3K9 trimethylation to regulate the development and virulence of B. cinerea

    Intergeneric transfer of ribosomal genes between two fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Horizontal gene transfer, also called lateral gene transfer, frequently occurs among prokaryotic organisms, and is considered an important force in their evolution. However, there are relatively few reports of transfer to or from fungi, with some notable exceptions in the acquisition of prokaryotic genes. Some fungal species have been found to contain sequences resembling those of bacterial genes, and with such sequences absent in other fungal species, this has been interpreted as horizontal gene transfer. Similarly, a few fungi have been found to contain genes absent in close relatives but present in more distantly related taxa, and horizontal gene transfer has been invoked as a parsimonious explanation. There is a paucity of direct experimental evidence demonstrating the occurrence of horizontal gene transfer in fungi.</p> <p>Results</p> <p>We found a fungal field isolate from rice (<it>Oryzae sativa</it>) that contains ribosomal DNA sequences from two species of fungal rice pathogens (<it>Thanatephorus cucumeris </it>and <it>Ceratobasidium oryzae-sativae</it>). This field isolate has four types of ribosomal DNA internal transcribed spacers (ITS), namely pure ITS of <it>C. oryzae-sativae</it>, which was dominant in this field isolate, pure ITS of <it>T. cucumeris</it>, and two chimeric ITS, with ITS1 derived from <it>C. oryzae-sativae </it>and ITS2 from <it>T. cucumeris</it>, or ITS1 from <it>T. cucumeri</it>s and ITS2 from <it>C. oryzae-sativae</it>. The presence of chimeric forms indicates that the intergeneric hybrid was not merely composed of nuclei from the parental species, but that nuclear fusion and crossing over had taken place.</p> <p>Conclusion</p> <p>Hyphae of <it>T. cucumeris </it>and <it>C. oryzae-sativae </it>are vegetatively incompatible, and do not successfully anastomose. However, they parasitize the same host, and perhaps under the influence of host enzymes targeted to weaken pathogen cells or in dying host plant tissue, the fungal hyphae lost their integrity, and normal vegetative incompatibility mechanisms were overcome, allowing the hyphae to fuse. Based on the presence of other similarly anomalous isolates from the field, we speculate that these types of intergeneric hybridization events and occurrences of horizontal gene transfer may not be so rare in the field.</p
    • …
    corecore