175 research outputs found

    Modified holographic dark energy in DGP brane world

    Full text link
    In this paper, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali-Gabadaze-Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ϵ=−1\epsilon=-1 branch which in pure DGP model can not undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.Comment: 8 pages, 4 figures, accepted for publication in PL

    Multitimescale Reliability Evaluation of DC-Link Capacitor Banks in Metro Traction Drive System

    Get PDF

    Quantitative detection of multi-frequency disturbance signal by Ï•-OTDR system

    Get PDF
    Recently, the combination of pattern recognition technology and distributed fiber sensing systems has become increasingly common, so whether the disturbance signal can be well recovered has become increasingly important. To verify the recovery and linear response of a distributed fiber optic sensing system to multi-frequency disturbance signals, a heterodyne coherent detection system for phase-sensitive optical time-domain reflectometry is developed. The output beat signal is extracted using the digital in-phase/quadrature demodulation algorithm. The signal can be precisely located on a 7 km length range, and the disturbance signal can be restored well through the phase information. Not only the superposition signal composed of the same signal but also that composed of different kinds of signals can be successfully restored. A fast Fourier transform algorithm is used to obtain the frequency information of the superimposed signal. Combined with the use of a finite impulse response filter, the superposed signal is decomposed according to its frequency components, which perfectly restores the two signals before they are superimposed. In addition, their amplitude is highly linear with the driving voltage of the piezoelectric transducer. The system can fully retain the details of each frequency component in the recovery of multi-frequency disturbance signals. More importantly, in field experiments, the disturbance behavior is well recovered, which has broad prospects in the application of perimeter security

    Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(II) complexes within single molecule break junctions

    Get PDF
    NSFC [20931006, U0934003, 91122006]; NSF of Fujian Province [2011J01065]Single-molecule conductance of three sulphur-functionalized organometallic wires with two ruthenium(II) centres spaced by 1,3-butadiyne was firstly investigated using an electrochemically assisted-mechanically controllable break junction (EC-MCBJ) approach. It is demonstrated that single-molecular conductance of these diruthenium(II) incorporated systems is significantly higher than oligo(phenylene-ethynylene) (OPE) having comparable lengths and exhibits weaker length dependence. The conductance improvement in these diruthenium(II) molecules is ascribable to the better energy match of the Fermi level of gold electrodes with the HOMO that is mainly resident on the Ru-C C-C C-Ru backbone. Furthermore, modulation of molecular conductance is achieved by changing the length and pi-conjugated system of the chelating 2,2':6',2 ''-terpyridyl ligand

    Tapered side-polished microfibre sensor for high sensitivity hCG detection

    Get PDF
    A high sensitivity human chorionic gonadotropin (hCG) detection was conducted by a tapered side-polished (TSP) optical fiber sensor. Experimentally, the TSP fiber sensor was made by side polishing a short section of single mode fiber to a D shape structure and tapering the D shape section to a small diameter (<10 μm in the experiments). By functionalizing the primary antibody of hCG onto the TSP fiber surface, the sensor was used for detecting hCG concentration. Experimental results show that when the hCG concentration is 0.1 mIU/mL, the sensor has an average wavelength shift of 0.82 nm. The limit of detection (LoD) of the hCG is estimated 0.058 mIU/mL, assuming three times of maximum wavelength variation (3×0.15=0.45 nm) in Phosphate buffer saline (PBS) to the measurement limit. The specificity has also been tested by immersing the sensor into a mixed biomaterial solution (hCG -1 mIU/mL, pig-IgG -1 /mL, Staphylococcus aureus -6×105 CFU/mL and Escherichia coli -2.5×105 CFU/mL). The result showed that the TSP optical fiber sensor has excellent specificity. The biosensor has potential application in clinical/medical diagnostics, human health, environmental quality and food safety monitoring

    Low-cost wearable sensor based on a D-shaped plastic optical fiber for respiration monitoring

    Get PDF
    A low cost, wearable textile-based respiratory sensing system is proposed and experimentally demonstrated. A highly sensitive D-shaped plastic optical fiber (POF) sensor that responds to bending is integrated into an elastic band structure to form a respiratory sensing system. The curvature sensing experiments were conducted on the D-shaped POF sensor, which has a coefficient of determination (R2) of 0.9977. The system can be used to monitor not only the respiratory rate (RR) of the human body under different movement states (resting, walking and running), but also the RR of steady and unsteady respiratory signals due to different physiological states. In addition, using the proposed signal processing technique, the interference of motion noise can be removed and the influence of body movement on the sensor response can be eliminated. The advantages of the system are its low cost, compactness and simplicity in design. Thus, the application of the proposed respiratory sensing system provides a simple and inexpensive optical solution for wearable health

    U-shape panda polarization-maintaining microfiber sensor coated with graphene oxide for relative humidity measurement

    Get PDF
    A new U-shape panda polarization-maintaining fiber (PPMF) based microfiber interferometer coated with graphene oxide (GO) film was proposed and experimentally demonstrated for relative humidity (RH) sensing. Experimental results show that the U-shape sensor has refractive index (RI) sensitivity of 1692.5nm/RIU in the RI range of 1.33 when the diameter of the taper waist is 10.08 µm. The surface of the U-shape sensor was then modified chemically and coated with a thin layer of GO film (59.64nm) for RH detection and the sensitivity is proportional to RH: as RH increases from 30% to 98%, the sensitivity increases from 0.111 to 0.361 nm/%RH and the response time is 0.28 s. In addition, the cross sensitivity to temperature, stability, reproducibility, and response/recovery time of the RH sensor were studied in detail. The proposed U-shape fiber RH sensor has advantage of high sensitivity, good reproducibility and fast response (0.28 s), which has potential application in areas requiring dynamic measurement of RH variations such as industrial product fabrication process control and breath state monitoring

    Molecular Cloning of the Genes Encoding the PR55/Bβ/δ Regulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, Carassius auratus

    Get PDF
    The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue specific and developmental expression patterns in Goldfish ( Carassius auratus). Our results revealed that the full-length cDNA for PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation during goldfish development

    Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications – A Review

    Get PDF
    A singlemode-multimode-singlemode (SMS) fiber structure consists of a short section of multimode fiber fusion-spliced between two SMS fibers. The mechanism underpinning the operation of an SMS fiber structure is multimode interference and associated self-imaging. SMS structures can be used in a variety of optical fiber systems but are most commonly used as sensors for a variety of parameters, ranging from macro-world measurands such as temperature, strain, vibration, flow rate, RI and humidity to the micro-world with measurands such as proteins, pathogens, DNA, and specific molecules. While traditional SMS structures employ a short section of standard multimode fiber, a large number of structures have been investigated and demonstrated over the last decade involving the replacement of the multimode fiber section with alternatives such as a hollow core fiber or a tapered fiber. The objective of replacing the multimode fiber has most often been to allow sensing of different measurands or to improve sensitivity. In this paper, several different categories of SMS fiber structures, including traditional SMS, modified SMS and tapered SMS fiber structures are discussed with some theoretical underpinning and reviews of a wide variety of sensing examples and recent advances. The paper then summarizes and compares the performances of a variety of sensors which have been published under a number of headings. The paper concludes by considering the challenges faced by SMS based sensing schemes in terms of their deployment in real world applications and discusses possible future developments of SMS fiber sensors
    • …
    corecore