10 research outputs found

    Image_1_Network Intervention, a Method to Address Complex Therapeutic Strategies.PDF

    No full text
    <p>Objective: Network-based approaches emerged as powerful tools for studying complex diseases. Our intention in this article was to raise awareness of the benefits of new therapeutic strategy in biological networks context and provide an introduction to this topic.</p><p>Methods: This article will discuss the rational for network intervention, and outline some of the important aspects of deciphering targets activities in the network and future embodiments of network intervention. We also present examples of network intervention based on the strategies these approaches use.</p><p>Results: Network intervention seeks for target combinations to perturb a specific subset of nodes in disease networks to inhibit the bypass mechanisms at systems level. Experimental results derived from our studies are discussed, with conclusions that lead to future research directions. A simple diagram is designed to give a way to find the minimum number of external input required for a network intervention based on the graph theory and get the analytical value of the least input.</p><p>Conclusion: Creating network intervention that addresses blindness and unthinking action in this way could, therefore, provide more benefit than multi-target therapy. We hope that this article will give readers an appreciation for a new therapeutic strategy that has been proposed for improving clinical benefit by adopting network-based approaches as well as insight into their properties.</p

    The length distribution of miRNA precursors in the miRBase Release 19.

    No full text
    <p>Most miRNA precursors were smaller than 200 nt (95.9%), with only a few over 500 nt (0.1%, most of which are plant miRNAs).</p

    Workflow of the contig-based strategy with current mainstream method for miRNA identification.

    No full text
    <p>Acquiring candidate miRNA precursors for hairpin structures is the first step in miRNA identification. This strategy is based on contigs from genomic DNA sequencing, replacing available dataset-based methods (represented by EST+GSS). <b>Blue-flow</b>. Pipeline of DNA sequencing <b>[It is the innovation of this strategy]</b>; <b>Red-flow</b>. Pipeline of small RNA sequencing.</p

    The performance of the contig-based strategy with different depth (cost).

    No full text
    <p>Both contig N50 (blue) and the number of identified miRNA (red) increase with depths of DNA sequencing while growth rates decrease. (Cost: the price of DNA sequencing in China, 2011).</p

    Table_1_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.DOCX

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p

    Table_2_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.DOCX

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p

    Image_4_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.tif

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p

    Table_3_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.DOCX

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p

    Image_2_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.tif

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p

    Image_1_System Pharmacology-Based Strategy to Decode the Synergistic Mechanism of Zhi-zhu Wan for Functional Dyspepsia.tif

    No full text
    <p>Functional dyspepsia (FD) is a widely prevalent gastrointestinal disorder throughout the world, whereas the efficacy of current treatment in the Western countries is limited. As the symptom is equivalent to the traditional Chinese medicine (TCM) term “stuffiness and fullness,” FD can be treated with Zhi-zhu Wan (ZZW) which is a kind of Chinese patent medicine. However, the “multi-component” and “multi-target” feature of Chinese patent medicine makes it challenge to elucidate the potential therapeutic mechanisms of ZZW on FD. Presently, a novel system pharmacology model including pharmacokinetic parameters, pharmacological data, and component contribution score (CS) is constructed to decipher the potential therapeutic mechanism of ZZW on FD. Finally, 61 components with favorable pharmacokinetic profiles and biological activities were obtained through ADME (absorption, distribution, metabolism, and excretion) screening in silico. The related targets of these components are identified by component targeting process followed by GO analysis and pathway enrichment analysis. And systematic analysis found that through acting on the target related to inflammation, gastrointestinal peristalsis, and mental disorder, ZZW plays a synergistic and complementary effect on FD at the pathway level. Furthermore, the component CS showed that 29 components contributed 90.18% of the total CS values of ZZW for the FD treatment, which suggested that the effective therapeutic effects of ZZW for FD are derived from all active components, not a few components. This study proposes the system pharmacology method and discovers the potent combination therapeutic mechanisms of ZZW for FD. This strategy will provide a reference method for other TCM mechanism research.</p
    corecore