130 research outputs found

    Piezoresistive effect of p-type single crystalline 3C-SiC on (111) plane

    Get PDF
    This paper presents for the first time the effect of strain on the electrical conductivity of p-type single crystalline 3C-SiC grown on a Si (111) substrate. 3C-SiC thin film was epitaxially formed on a Si (111) substrate using the low pressure chemical vapor deposition process. The piezoresistive effect of the grown film was investigated using the bending beam method. The average longitudinal gauge factor of the p-type single crystalline 3C-SiC was found to be around 11 and isotropic in the (111) plane. This gauge factor is 3 times smaller than that in a p-type 3C-SiC (100) plane. This reduction of the gauge factor was attributed to the high density of defects in the grown 3C-SiC (111) film. Nevertheless, the gauge factor of the p-type 3C-SiC (111) film is still approximately 5 times higher than that in most metals, indicating its potential for niche mechanical sensing applications

    Thermoresistance of p-Type 4H–SiC Integrated MEMS Devices for High-Temperature Sensing

    Get PDF
    There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K−1, corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K−1. The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s−1)−0.5 mW−1. These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K

    Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects

    Get PDF
    This paper presents an innovative nano strain-amplifier employed to significantly enhance the sensitivity of piezoresistive strain sensors. Inspired from the dogbone structure, the nano strain-amplifier consists of a nano thin frame released from the substrate, where nanowires were formed at the centre of the frame. Analytical and numerical results indicated that a nano strain-amplifier significantly increases the strain induced into a free standing nanowire, resulting in a large change in their electrical conductance. The proposed structure was demonstrated in p-type cubic silicon carbide nanowires fabricated using a top down process. The experimental data showed that the nano strain-amplifier can enhance the sensitivity of SiC strain sensors at least 5.4 times larger than that of the conventional structures. This result indicates the potential of the proposed strain-amplifier for ultra-sensitive mechanical sensing applications.Comment: 4 pages, 5 figure

    Electrically stable carbon nanotube yarn under tensile strain

    Get PDF
    We report a highly stable electrical conductance of a compact and well-oriented carbon nanotube yarn under tensile strain. The gauge factor of the yarn was found to be extremely small of approximately 0.15 thanks to the improvements in the dry spinning process, includingmultiweb spinning and heat treatment. The threshold strain εs, below which the yarn retains its electrical conductance stability, has also been determined to be approximately 15 × 103 ppm. Owing to its highly stable resistance under mechanical strain, the yarn has a good potential as a wiring material for niche applications,where lightweight and resistance stability are required

    A hot-film air flow sensor for elevated temperatures

    Get PDF
    We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °

    Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method

    Get PDF
    Flexible and multifunctional electronic devices have been proven to show potential for various applications including human-motion detection and wearable thermal therapy. The key advantages of these systems are (1) highly stable, sensitive and fast-response devices, (2) fabrication of macroscale devices on flexible substrates, and (3) integrated (lab-on-chip) and multifunctional devices. However, their fabrication commonly requires toxic solvents, as well as time-consuming and complex processes. Here, we demonstrate the low-cost, rapid-prototyping and user-friendly fabrication of flexible transducers using recyclable, water-resistant poly(vinyl chloride) films as a substrate, and ubiquitously available pencil graphite as a functional layer without using any toxic solvents or additional catalysts. The flexible heaters showed good characteristics such as fast thermal response, good thermostability (low temperature coefficient of resistance) and low power consumption. The heaters with their capability of perceiving human motion were shown to be effective. The proof of concept of other functional devices such as vibration-based droplet sensors and drag-force air flow sensors was also demonstrated. Results from this study indicate that a wide range of electronic devices fabricated from the environmental-friendly material by this simple and user-friendly approach could be utilized for cost-effective, flexible and low power consuming thermal therapy, health monitoring systems and other real-time monitoring devices without using any toxic chemicals or advanced processes

    Thermal flow sensors for harsh environments

    Get PDF
    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application

    Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications

    Get PDF
    A cost effective and easy to fabricate stress sensor based on pseudo-Hall effect in Graphite on Paper (GOP) has been presented in this article. The four terminal devices were developed by pencil drawing with hand on to the paper substrate. The stress was applied to the paper containing four terminal devices with the input current applied at two terminals and the offset voltage observed at other two terminals called pseudo-Hall effect. The GOP stress sensor showed significant response to the applied stress which was smooth and linear. These results showed that the pseudo-Hall effect in GOP based four terminal devices can be used for cost effective, flexible and easy to make stress, strain or force sensors

    Orientation dependence of the pseudo-Hall effect in p-type 3C-SiC four-terminal devices under mechanical stress

    Get PDF
    This paper presents for the first time the orientation dependence of the pseudo-Hall effect in p-type 3C–SiC four-terminal devices under mechanical stress. Experimental results indicate that the offset voltage of p-type 3C–SiC four-terminal devices significantly depends on the directions of the applied current and stress. We also calculated the piezoresistive coefficients π61, π62, and π66, showing that π66 with its maximum value of approximately 16.7 × 10−11 Pa−1 plays a more dominant role than π61 and π62. The magnitude of the offset voltage in arbitrary orientation under stress was estimated based on these coefficients. The finding in this study plays an important role in the optimization of Microelectromechanical Systems (MEMS) mechanical sensors utilizing the pseudo-Hall effect in p-type 3C–SiC
    corecore