175 research outputs found

    Piezoresistive effect of p-type single crystalline 3C-SiC on (111) plane

    Get PDF
    This paper presents for the first time the effect of strain on the electrical conductivity of p-type single crystalline 3C-SiC grown on a Si (111) substrate. 3C-SiC thin film was epitaxially formed on a Si (111) substrate using the low pressure chemical vapor deposition process. The piezoresistive effect of the grown film was investigated using the bending beam method. The average longitudinal gauge factor of the p-type single crystalline 3C-SiC was found to be around 11 and isotropic in the (111) plane. This gauge factor is 3 times smaller than that in a p-type 3C-SiC (100) plane. This reduction of the gauge factor was attributed to the high density of defects in the grown 3C-SiC (111) film. Nevertheless, the gauge factor of the p-type 3C-SiC (111) film is still approximately 5 times higher than that in most metals, indicating its potential for niche mechanical sensing applications

    Soft ionic liquid multi-point touch sensor

    Get PDF
    The development of electronic skin (e-skin) and soft tactile sensing has recently attracted great interest. Here we report for the first time on a novel ionic liquid (IL) based soft pressure sensor with multi-point touch detection capability using 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]−) as a highly conductive sensing medium. The sensing mechanism is attributed to the repopulation of charge cations and anions in aqueous solution under pressure. The sensor can detect two dimensional touching positions with a sensitivity of −0.28% kPa−1. Our sensor showed good stability and temperature independence thanks to the incompressibility of IL in the range of touch pressure and the appropriate signal measurement configuration. We successfully demonstrated the sensor's capability to detect multi-point human touch with different pressure levels. Our simple design with smart structures and ease of fabrication processes enable the development of a soft and low-cost sensor with multiple-point sensing capabilities on a single chip

    Thermoresistance of p-Type 4H–SiC Integrated MEMS Devices for High-Temperature Sensing

    Get PDF
    There is an increasing demand for the development and integration of multifunctional sensing modules into power electronic devices that can operate in high temperature environments. Here, the authors demonstrate the tunable thermoresistance of p‐type 4H–SiC for a wide temperature range from the room temperature to above 800 K with integrated flow sensing functionality into a single power electronic chip. The electrical resistance of p‐type 4H–SiC is found to exponentially decrease with increasing temperature to a threshold temperature of 536 K. The temperature coefficient of resistance (TCR) shows a large and negative value from −2100 to −7600 ppm K−1, corresponding to a thermal index of 625 K. From the threshold temperature of 536–846 K, the electrical resistance shows excellent linearity with a positive TCR value of 900 ppm K−1. The authors successfully demonstrate the integration of p–4H–SiC flow sensing functionality with a high sensitivity of 1.035 μA(m s−1)−0.5 mW−1. These insights in the electrical transport of p–4H–SiC aid to improve the performance of p–4H–SiC integrated temperature and flow sensing systems, as well as the design consideration and integration of thermal sensors into 4H–SiC power electronic systems operating at high temperatures of up to 846 K

    Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects

    Get PDF
    This paper presents an innovative nano strain-amplifier employed to significantly enhance the sensitivity of piezoresistive strain sensors. Inspired from the dogbone structure, the nano strain-amplifier consists of a nano thin frame released from the substrate, where nanowires were formed at the centre of the frame. Analytical and numerical results indicated that a nano strain-amplifier significantly increases the strain induced into a free standing nanowire, resulting in a large change in their electrical conductance. The proposed structure was demonstrated in p-type cubic silicon carbide nanowires fabricated using a top down process. The experimental data showed that the nano strain-amplifier can enhance the sensitivity of SiC strain sensors at least 5.4 times larger than that of the conventional structures. This result indicates the potential of the proposed strain-amplifier for ultra-sensitive mechanical sensing applications.Comment: 4 pages, 5 figure

    A rapid and cost-effective metallization technique for 3C-SiC MEMS using direct wire bonding

    Get PDF
    This paper presents a simple, rapid and cost-effective wire bonding technique for single crystalline silicon carbide (3C–SiC) MEMS devices. Utilizing direct ultrasonic wedge–wedge bonding, we have demonstrated for the first time the direct bonding of aluminum wires onto SiC films for the characterization of electronic devices without the requirement for any metal deposition and etching process. The bonded joints between the Al wires and the SiC surfaces showed a relatively strong adhesion force up to approximately 12.6–14.5 mN and excellent ohmic contact. The bonded wire can withstand high temperatures above 420 K, while maintaining a notable ohmic contact. As a proof of concept, a 3C–SiC strain sensor was demonstrated, where the sensing element was developed based on the piezoresistive effect in SiC and the electrical contact was formed by the proposed direct-bonding technique. The SiC strain sensor possesses high sensitivity to the applied mechanical strains, as well as exceptional repeatability. The work reported here indicates the potential of an extremely simple direct wire bonding method for SiC for MEMS and microelectronic applications

    A hot-film air flow sensor for elevated temperatures

    Get PDF
    We report a novel packaging and experimental technique for characterizing thermal flow sensors at high temperatures. This paper first reports the fabrication of 3C-SiC (silicon carbide) on a glass substrate via anodic bonding, followed by the investigation of thermoresistive and Joule heating effects in the 3C-SiC nano-thin film heater. The high thermal coefficient of resistance of approximately −20 720 ppm/K at ambient temperature and −9287 ppm/K at 200 °C suggests the potential use of silicon carbide for thermal sensing applications in harsh environments. During the Joule heating test, a high-temperature epoxy and a brass metal sheet were utilized to establish the electric conduction between the metal electrodes and SiC heater inside a temperature oven. In addition, the metal wires from the sensor to the external circuitry were protected by a fiberglass insulating sheath to avoid short circuit. The Joule heating test ensured the stability of mechanical and Ohmic contacts at elevated temperatures. Using a hot-wire anemometer as a reference flow sensor, calibration tests were performed at 25 °C, 35 °C, and 45 °C. Then, the SiC hot-film sensor was characterized for a range of low air flow velocity, indicating a sensitivity of 5 mm−1 s. The air flow was established by driving a metal propeller connected to a DC motor and controlled by a microcontroller. The materials, metallization, and interconnects used in our flow sensor were robust and survived temperatures of around 200 °

    Electrically stable carbon nanotube yarn under tensile strain

    Get PDF
    We report a highly stable electrical conductance of a compact and well-oriented carbon nanotube yarn under tensile strain. The gauge factor of the yarn was found to be extremely small of approximately 0.15 thanks to the improvements in the dry spinning process, includingmultiweb spinning and heat treatment. The threshold strain εs, below which the yarn retains its electrical conductance stability, has also been determined to be approximately 15 × 103 ppm. Owing to its highly stable resistance under mechanical strain, the yarn has a good potential as a wiring material for niche applications,where lightweight and resistance stability are required

    Orientation dependence of the pseudo-Hall effect in p-type 3C-SiC four-terminal devices under mechanical stress

    Get PDF
    This paper presents for the first time the orientation dependence of the pseudo-Hall effect in p-type 3C–SiC four-terminal devices under mechanical stress. Experimental results indicate that the offset voltage of p-type 3C–SiC four-terminal devices significantly depends on the directions of the applied current and stress. We also calculated the piezoresistive coefficients π61, π62, and π66, showing that π66 with its maximum value of approximately 16.7 × 10−11 Pa−1 plays a more dominant role than π61 and π62. The magnitude of the offset voltage in arbitrary orientation under stress was estimated based on these coefficients. The finding in this study plays an important role in the optimization of Microelectromechanical Systems (MEMS) mechanical sensors utilizing the pseudo-Hall effect in p-type 3C–SiC
    corecore