5,445 research outputs found

    Detection of bottom ferromagnetic electrode oxidation in magnetic tunnel junctions by magnetometry measurements

    Full text link
    Surface oxidation of the bottom ferromagnetic (FM) electrode, one of the major detrimental factors to the performance of a Magnetic Tunnel Junction (MTJ), is difficult to avoid during the fabrication process of the MTJ's tunnel barrier. Since Co rich alloys are commonly used for the FM electrodes in MTJs, over-oxidation of the tunnel barrier results in the formation of a CoO antiferromagnetic (AF) interface layer which couples with the bottom FM electrode to form a typical AF/FM exchange bias (EB) system. In this work, surface oxidation of the CoFe and CoFeB bottom electrodes was detected via magnetometry measurements of exchange-bias characterizations including the EB field, training effect, uncompensated spin density, and coercivity. Variations of these parameters were found to be related to the surface oxidation of the bottom electrode, among them the change of coercivity is most sensitive. Annealed samples show evidence for an oxygen migration back to the MgO tunnel barrier by annealing.Comment: 5 pages, 4 figues, submitted to J. Appl. Phy

    Thermodynamically stable noncomposite vortices in mesoscopic two-gap superconductors

    Full text link
    In mesoscopic two-gap superconductors with sizes of the order of the coherence length noncomposite vortices are found to be thermodynamically stable in a large domain of the T−HT - H phase diagram. In these phases the vortex cores of one condensate are spatially separated from the other condensate ones, and their respective distributions can adopt distinct symmetries. The appearance of these vortex phases is caused by a non-negligible effect of the boundary of the sample on the superconducting order parameter and represents therefore a genuine mesoscopic effect. For low values of interband Josephson coupling vortex patterns with L1≠L2L_1 \neq L_2 can arise in addition to the phases with L1=L2L_1 =L_2, where L1L_1 and L2L_2 are total vorticities in the two condensates. The calculations show that noncomposite vortices could be observed in thin mesoscopic samples of MgB2_{2}.Comment: 5 pages, 3 figures, to be published in Europhysics Letter

    Assessing banks’ resilience: A complementary approach to stress testing using fair values from banks’ financial statements

    Get PDF
    For more than a decade, supervisory banking authorities in Europe and the United States have sought to assess the resilience of banks to adverse economic episodes to safeguard the financial system's stability. They rely on regulatory capital measures like Common Equity Tier 1 (CET1) relative to risk-weighted assets in the aftermath of potential economic crises. We propose a new measure of banks' resilience based on financial statements. The fair value margin (FVM) is estimated as the difference between the fair value of assets and the book value of liabilities, scaled by the book value of equity. We find that FVM is positively associated with the surplus or shortfall of CET1 resulting from the stress testing results from 2014, 2016 and 2018. To corroborate the relevance of FVM for supervisory authorities, we compare the ability of the loan component of FVM to predict future credit losses with the capital surplus/shortfall metric derived from the stress test. The findings indicate that the fair value of loans predicts net charge-offs better than stress test outcomes. Therefore, we suggest that FVM could be used as a readily available and relatively low-cost tool to assess bank resilience, thus complementing the stress test exercises

    Type-1.5 Superconductors

    Full text link
    We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (kappa_1 0.707) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamer-like vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let

    Precautionary Measures for Credit Risk Management in Jump Models

    Full text link
    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.Comment: 31 pages, 4 figure

    Three-body decays of sleptons in models with non-universal Higgs masses

    Get PDF
    We compute the three-body decays of charged sleptons and sneutrinos into other sleptons. These decays are of particular interest in SUSY-breaking models with non-universal Higgs mass parameters, where the left-chiral sleptons can be lighter than the right-chiral ones, and lighter than the lightest neutralino. We present the formulas for the three-body decay widths together with a numerical analysis in the context of gaugino-mediated SUSY breaking with a gravitino LSP.Comment: Version published in JHEP. See http://cern.ch/kraml/papers/ for high-res figure

    Control of non-controllable quantum systems: A quantum control algorithm based on Grover iteration

    Full text link
    A new notion of controllability, eigenstate controllability, is defined for finite-dimensional bilinear quantum mechanical systems which are neither strongly completely controllably nor completely controllable. And a quantum control algorithm based on Grover iteration is designed to perform a quantum control task of steering a system, which is eigenstate controllable but may not be (strongly) completely controllable, from an arbitrary state to a target state.Comment: 7 pages, no figures, submitte

    Edge states and topological orders in the spin liquid phases of star lattice

    Full text link
    A group of novel materials can be mapped to the star lattice, which exhibits some novel physical properties. We give the bulk-edge correspondence theory of the star lattice and study the edge states and their topological orders in different spin liquid phases. The bulk and edge-state energy structures and Chern number depend on the spin liquid phases and hopping parameters because the local spontaneous magnetic flux in the spin liquid phase breaks the time reversal and space inversion symmetries. We give the characteristics of bulk and edge energy structures and their corresponding Chern numbers in the uniform, nematic and chiral spin liquids. In particular, we obtain analytically the phase diagram of the topological orders for the chiral spin liquid states SL[\phi,\phi,-2\phi], where \phi is the magnetic flux in two triangles and a dodecagon in the unit cell. Moreover, we find the topological invariance for the spin liquid phases, SL[\phi_{1},\phi_{2},-(\phi_{1}+\phi_{2})] and SL[\phi_{2},\phi_{1},-(\phi_{1}+\phi_{2})]. The results reveal the relationship between the energy-band and edge-state structures and their topological orders of the star lattice.Comment: 7 pages, 8 figures, 1 tabl
    • …
    corecore