1,299 research outputs found

    Laser power stabilization for second-generation gravitational wave detectors

    Get PDF
    We present results on the power stabilization of a Nd:YAG laser in the frequency band from 1 Hz to 100 kHz. High-power, low-noise photodetectors are used in a dc-coupled control loop to achieve relative power fluctuations down to 5×10−9 Hz−1/2 at 10 Hz and 3.5×10−9 Hz−1/2 up to several kHz, which is very close to the shot-noise limit for 80 mA of detected photocurrent on each detector. We investigated and eliminated several noise sources such as ground loops and beam pointing. The achieved stability level is close to the requirements for the Advanced LIGO gravitational wave detector

    Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source

    Get PDF
    The frequency of a 700mW monolithic non-planar Nd:YAG ring laser (NPRO) depends with a large coupling coefficient (some MHz/mW) on the power of its laser-diode pump source. Using this effect we demonstrate the frequency stabilization of an NPRO to a frequency reference by feeding back to the current of its pump diodes. We achieved an error point frequency noise smaller than 1mHz/sqrt(Hz), and simultaneously a reduction of the power noise of the NPRO by 10dB without an additional power stabilization feed-back system.Comment: accepted for publication by Optics Letter

    Frequency domain interferometer simulation with higher-order spatial modes

    Full text link
    FINESSE is a software simulation that allows to compute the optical properties of laser interferometers as they are used by the interferometric gravitational-wave detectors today. It provides a fast and versatile tool which has proven to be very useful during the design and the commissioning of gravitational-wave detectors. The basic algorithm of FINESSE numerically computes the light amplitudes inside an interferometer using Hermite-Gauss modes in the frequency domain. In addition, FINESSE provides a number of commands to easily generate and plot the most common signals like, for example, power enhancement, error or control signals, transfer functions and shot-noise-limited sensitivities. Among the various simulation tools available to the gravitational wave community today, FINESSE is the most advanced general optical simulation that uses the frequency domain. It has been designed to allow general analysis of user defined optical setups while being easy to install and easy to use.Comment: Added an example for the application of the simulation during the commisioning of the GEO 600 gravitational-wave detecto

    Optical ac coupling to overcome limitations in the detection of optical power fluctuations

    Get PDF
    A high-sensitivity detection method for optical power fluctuations is demonstrated based on photodetection in reflection of an optical resonator with a specific impedance matching. That resonator is used to reduce the carrier power reflected by the resonator while preserving the power fluctuation sidebands for frequencies above the resonator bandwidth. A sensitivity of 7×10−10 Hz−1/2 for relative power fluctuations was achieved with only 3 mA of detected photocurrent and 99.6% of the power remained for downstream experiments. As in the widely used ac coupling of electrical signals, this technique overcomes dynamic-range limits and reduces detector noise associated with large carrier amplitudes of the optical field

    Laser power noise detection at the quantum-noise limit of 32 A photocurrent

    No full text

    Laser beam quality and pointing measurement with an optical resonator

    Get PDF
    We present a compact diagnostic breadboard that is based on an optical ring resonator for measuring beam quality and pointing of single-frequency continuous wave lasers at a wavelength of 1064 nm. To determine the beam quality of the coherent test beam, this optical resonator is used to perform a mode decomposition into Hermite-Gaussian modes. For our laser system, a power fraction in the fundamental Gaussian mode of 97.2%±0.2% was measured. Residual misalignment and mis-mode-matching to the resonator as well as the astigmatism and/or ellipticity of the test beam have been determined. Numerical simulations showed that measurements of the M2 factor and transversal intensity distribution are not suitable for determining this power fraction. To measure the beam pointing, the fundamental mode of the optical resonator was used as a stable reference. The pointing of the test beam was measured with the differential wave front sensing technique up to Fourier frequencies of 1 kHz with a sensitivity to relative pointing of |epsilon|=1×10−6/sqrt(Hz)

    Polarization resolution of LISA

    Get PDF
    LISA is a spaceborne laser interferometer for the detection and observation of gravitational waves, currently under study by ESA. A brief introduction of the main features of this detector, concentrating on its one-year orbital motion around the Sun is given. The amplitude as well as the phase of a gravitational wave is modulated due to that motion, allowing us to extract information from the signal. The detection of monochromatic gravitational waves based on the well-known signal detection theory is simulated, focusing on estimating the angular parameters of the source. The results of the semi-analytic calculations give the angular resolution of LISA

    10 dB Quantum-Enhanced Michelson Interferometer with Balanced Homodyne Detection

    Get PDF

    Measuring a binary's orientation with LISA

    Get PDF
    We are presenting numerical results concerning LISA's ability to distinguish between different polarizational states of a gravitational wave. Therefore, we assume a binary as a source of a gravitational wave, finding its orientation which determines the polarization of the gravitational wave. By means of signal processing, we are able to give the 1σ-uncertainty for determining the orientation of the source
    • …
    corecore