41 research outputs found

    Communication Architectures for Reliable and Trusted Wireless Systems in Smart Grids

    Get PDF

    Analysis of the Communication Traffic for Blockchain Synchronization of IoT Devices

    Full text link
    Blockchain is a technology uniquely suited to support massive number of transactions and smart contracts within the Internet of Things (IoT) ecosystem, thanks to the decentralized accounting mechanism. In a blockchain network, the states of the accounts are stored and updated by the validator nodes, interconnected in a peer-to-peer fashion. IoT devices are characterized by relatively low computing capabilities and low power consumption, as well as sporadic and low-bandwidth wireless connectivity. An IoT device connects to one or more validator nodes to observe or modify the state of the accounts. In order to interact with the most recent state of accounts, a device needs to be synchronized with the blockchain copy stored by the validator nodes. In this work, we describe general architectures and synchronization protocols that enable synchronization of the IoT endpoints to the blockchain, with different communication costs and security levels. We model and analytically characterize the traffic generated by the synchronization protocols, and also investigate the power consumption and synchronization trade-off via numerical simulations. To the best of our knowledge, this is the first study that rigorously models the role of wireless connectivity in blockchain-powered IoT systems.Comment: Paper accepted at IEEE International Conference on Communications (ICC) 201

    On the Impact of Wireless Jamming on the Distributed Secondary Microgrid Control

    Full text link
    The secondary control in direct current microgrids (MGs) is used to restore the voltage deviations caused by the primary droop control, where the latter is implemented locally in each distributed generator and reacts to load variations. Numerous recent works propose to implement the secondary control in a distributed fashion, relying on a communication system to achieve consensus among MG units. This paper shows that, if the system is not designed to cope with adversary communication impairments, then a malicious attacker can apply a simple jamming of a few units of the MG and thus compromise the secondary MG control. Compared to other denial-of-service attacks that are oriented against the tertiary control, such as economic dispatch, the attack on the secondary control presented here can be more severe, as it disrupts the basic functionality of the MG

    Blockchain-Based and Multi-Layered Electricity Imbalance Settlement Architecture

    Get PDF
    corecore