15 research outputs found

    A Generalized Fact and Model of Long-Run Economic Growth: Kaldor Fact as a Special Case

    Get PDF
    This paper provides new evidence on the long-run relationship between economic growth and labor's share in national income, based on a comprehensive panel data set for 123 countries from 1950 to 2004. Xie's primary finding is that labor's share follows a cubic relationship with real GDP per capita over the long process of development. At the beginning of the modern economic growth process, the share of labor in national income first decreases until an initial threshold is reached. After that, labor's share keeps increasing until the country's GDP per capita reaches a second threshold before falling again. Xie argues that these dynamics apply not only to the less developed countries in the postwar years, but also to the advanced countries like the United States and the United Kingdom during their early economic take-offs, starting in the late 18th and 19th century, respectively. Finally, he proposes a two-sector constant elasticity of substitution (CES)-type growth model and simulate the model to replicate and explain the possible mechanism behind such a nonlinear pattern of movements in labor's share.Constant elasticity of substitution, Kaldor fact, Kuznets curve, Labor's share, Structural change

    Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics

    No full text
    Supplemental blue/red lighting accelerated fruit coloring and promoted lycopene synthesis in tomato fruits. Potassium (K) is the most enriched cation in tomato fruits, and its fertigation improved tomato yield and fruit color. However, the effects of supplemental lighting on K uptake and transport by tomatoes and whether supplemental lighting accelerates fruit coloring through enhancing K uptake and transport are still unclear. We investigated the effects of supplemental light-emitting diode (LED) lighting (SL; 100% red, 100% blue; 75% red combined 25% blue) on K uptake in roots and transport in the fruits as well as the fruit coloring of tomatoes (Micro-Tom) grown in an experimental greenhouse in hydroponics. The use of red SL or red combined blue SL enhanced K uptake and K accumulation as well as carotenoid (phytoene, lycopene, γ-carotene, and β-carotene) content in fruits by increasing photosynthesis, plant growth, and fruit weight. The genes related to ethylene signaling were upregulated by red SL. Quantitative real-time PCR (qRT-PCR) results showed that K transporter genes (SlHAKs) are differentially expressed during fruit development and ripening. The highest-expressed gene was SlHAK10 when fruit reached breaker and ripening. SlHAK3 and SlHAK19 were highly expressed at breaker, and SlHAK18 was highly expressed at ripening. These might be related to the formation of tomato fruit ripening and quality. SlHAK4, SlHAK6, SlHAK8, and SlHAK9 were significantly downregulated with fruit ripening and induced by low K. The expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 were significantly increased by blue SL or red combined blue SL during breaker and ripening. Blue SL or red combined blue SL increased content of phytoene, β-carotene, α-carotene, and γ-carotene and accelerated fruit coloring by enhancing K uptake in roots and transport in fruits during fruit ripening. This was consistent with the expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 during fruit development and ripening. The key genes of photoreceptors, light signaling transcript factors as well as abscisic acid (ABA) transduction induced by blue SL or red combined blue SL were consistent with the upregulated genes of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 under blue SL and red combined blue SL. The K transport in tomato fruits might be mediated by light signaling and ABA signaling transduction. These results provide valuable information for fruit quality control and the light regulating mechanism of K transport and fruit coloring in tomatoes

    Detection of UGT1A1*28 Polymorphism Using Fragment Analysis

    No full text
    Background and objective Uridine-diphosphoglucuronosyl transferase 1A1 (UGT1A1), UGT1A1*28 polymorphism can reduce UGT1A1 enzymatic activity, which may lead to severe toxicities in patients who receive irinotecan. This study tries to build a fragment analysis method to detect UGT1A1*28 polymorphism. Methods A total of 286 blood specimens from the lung cancer patients who were hospitalized in Guangdong General Hospital between April 2014 to May 2015 were detected UGT1A1*28 polymorphism by fragment analysis method. Results Comparing with Sanger sequencing, precision and accuracy of the fragment analysis method were 100%. Of the 286 patients, 236 (82.5% harbored TA6/6 genotype, 48 (16.8%) TA 6/7 genotype and 2 (0.7%) TA7/7 genotype. Conclusion Our data suggest hat the fragment analysis method is robust for detecting UGT1A1*28 polymorphism in clinical practice. It’s simple, time-saving, and easy-to-carry

    A Ubiquitin Ligase of Symbiosis Receptor Kinase Involved in Nodule Organogenesis

    No full text
    The symbiosis receptor kinase (SymRK) is required for morphological changes of legume root hairs triggered by rhizobial infection. How protein turnover of SymRK is regulated and how the nodulation factor signals are transduced downstream of SymRK are not known. In this report, a SymRK-interacting E3 ubiquitin ligase (SIE3) was shown to bind and ubiquitinate SymRK. The SIE3-SymRK interaction and the ubiquitination of SymRK were shown to occur in vitro and in planta. SIE3 represents a new class of plant-specific E3 ligases that contain a unique pattern of the conserved CTLH (for C-terminal to LisH), CRA (for CT11-RanBPM), and RING (for Really Interesting New Gene) domains. Expression of SIE3 was detected in all tested tissues of Lotus japonicus plants, and its transcript level in roots was enhanced by rhizobial infection. The SIE3 protein was localized to multiple subcellular locations including the nuclei and plasma membrane, where the SIE3-SymRK interaction took place. Overexpression of SIE3 promoted nodulation in transgenic hairy roots, whereas downregulation of SIE3 transcripts by RNA interference inhibited infection thread development and nodule organogenesis. These results suggest that SIE3 represents a new class of E3 ubiquitin ligase, acts as a regulator of SymRK, and is involved in rhizobial infection and nodulation in L. japonicus

    How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface

    No full text
    The unidirectional alignment of graphene islands is essential to the synthesis of wafer-scale single-crystal graphene on Ge(110) surface, but the underlying mechanism is not well-understood. Here we report that the necessary coalignment of the nucleating graphene islands on Ge(110) surface is caused by the presence of step pattern; we show that on the preannealed Ge(110) textureless surface the graphene islands appear nonpreferentially orientated, while on the Ge(110) surfaces with natural step pattern, all graphene islands emerge coaligned. First-principles calculations and theoretical analysis reveal this different alignment behaviors originate from the strong chemical binding formed between the graphene island edges and the atomic steps on the Ge(110) surface, and the lattice matching at edge-step interface dictates the alignment of graphene islands with the armchair direction of graphene along the [-110] direction of the Ge(110) substrate.ope
    corecore