11 research outputs found

    Prognostic Value of [<sup>18</sup>F]FDG PET Radiomics to Detect Peritoneal and Distant Metastases in Locally Advanced Gastric Cancer—A Side Study of the Prospective Multicentre PLASTIC Study

    Get PDF
    Aim: To improve identification of peritoneal and distant metastases in locally advanced gastric cancer using [18F]FDG-PET radiomics. Methods: [18F]FDG-PET scans of 206 patients acquired in 16 different Dutch hospitals in the prospective multicentre PLASTIC-study were analysed. Tumours were delineated and 105 radiomic features were extracted. Three classification models were developed to identify peritoneal and distant metastases (incidence: 21%): a model with clinical variables, a model with radiomic features, and a clinicoradiomic model, combining clinical variables and radiomic features. A least absolute shrinkage and selection operator (LASSO) regression classifier was trained and evaluated in a 100-times repeated random split, stratified for the presence of peritoneal and distant metastases. To exclude features with high mutual correlations, redundancy filtering of the Pearson correlation matrix was performed (r = 0.9). Model performances were expressed by the area under the receiver operating characteristic curve (AUC). In addition, subgroup analyses based on Lauren classification were performed. Results: None of the models could identify metastases with low AUCs of 0.59, 0.51, and 0.56, for the clinical, radiomic, and clinicoradiomic model, respectively. Subgroup analysis of intestinal and mixed-type tumours resulted in low AUCs of 0.67 and 0.60 for the clinical and radiomic models, and a moderate AUC of 0.71 in the clinicoradiomic model. Subgroup analysis of diffuse-type tumours did not improve the classification performance. Conclusion: Overall, [18F]FDG-PET-based radiomics did not contribute to the preoperative identification of peritoneal and distant metastases in patients with locally advanced gastric carcinoma. In intestinal and mixed-type tumours, the classification performance of the clinical model slightly improved with the addition of radiomic features, but this slight improvement does not outweigh the laborious radiomic analysis.</p

    Semi-anthropomorphic photoacoustic breast phantom

    Get PDF
    Imaging parameters of photoacoustic breast imaging systems such as the spatial resolution and imaging depth are often characterized with phantoms. These objects usually contain simple structures in homogeneous media such as absorbing wires or spherical objects in scattering gels. While these kinds of basic phantoms are uncluttered and useful, they do not challenge the system as much as a breast does, and can thereby overestimate the system’s performance. The female breast is a complex collection of tissue types, and the acoustic and optical attenuation of these tissues limit the imaging depth, the resolution and the ability to extract quantitative information. For testing and challenging photoacoustic breast imaging systems to the full extent before moving to in vivo studies, a complex breast phantom which simulates the breast’s most prevalent tissues is required. In this work we present the first three dimensional multi-layered semi-anthropomorphic photoacoustic breast phantom. The phantom aims to simulate skin, fat, fibroglandular tissue and blood vessels. The latter three are made from custom polyvinyl chloride plastisol (PVCP) formulations and are appropriately doped with additives to obtain tissue realistic acoustic and optical properties. Two tumors are embedded, which are modeled as clusters of small blood vessels. The PVCP materials are surrounded by a silicon layer mimicking the skin. The tissue mimicking materials were cast into the shapes and sizes expected in the breast using 3D-printed moulds developed from a magnetic resonance imaging segmented numerical breast model. The various structures and layers were assembled to obtain a realistic breast morphology. We demonstrate the phantom’s appearance in both ultrasound imaging as photoacoustic tomography and make a comparison with a photoacoustic image of a real breast. A good correspondence is observed, which confirms the phantom’s usefulness

    A 3D semi-anthropomorphic photoacoustic breast phantom

    No full text
    Photoacoustic tomographic breast imaging systems progressively move into the clinics for in-vivo studies. Next to tumor detection, studies also focus on extracting information about the tumor by performing multi-wavelength photoacoustics for quantitative oxygen saturation estimations. Until now, it has been difficult to compare the results from different systems due to the wide variability in system characteristics and image reconstruction algorithms. In order to do inter-system comparisons in photoacoustic breast imaging, and to validate oxygen saturation estimations, a standardized but realistic measurement object is required. In this study, we present the first 3D semi-anthropomorphic photoacoustic breast phantom and demonstrate its features both in ultrasound imaging as in photoacoustic tomography

    Tomographic imaging with an ultrasound and LED-based photoacoustic system

    No full text
    Pulsed lasers in photoacoustic tomography systems are expensive, which limit their use to a few clinics and small animal labs. We present a method to realize tomographic ultrasound and photoacoustic imaging using a commercial LED-based photoacoustic and ultrasound system. We present two illumination configurations using LED array units and an optimal number of angular views for tomographic reconstruction. The proposed method can be a cost-effective solution for applications demanding tomographic imaging and can be easily integrated into conventional linear array-based ultrasound systems. We present a potential application for finger joint imaging in vivo, which can be used for point-of-care rheumatoid arthritis diagnosis and monitoring
    corecore