4,447 research outputs found

    The Casimir effect for the scalar and Elko fields in a Lifshitz-like field theory

    Full text link
    In this work, we obtain the Casimir energy for the real scalar field and the Elko neutral spinor field in a field theory at a Lifshitz fixed point (LP). We analyze the massless and the massive case for both fields using dimensional regularization. We obtain the Casimir energy in terms of the dimensional parameter and the LP parameter. Particularizing our result, we can recover the usual results without LP parameter in (3+1) dimensions presented in the literature. Moreover, we compute the effects of the LP parameter in the thermal corrections for the massless scalar field.Comment: 20 pages, 2 figures, some results have been modified and other changes to the text have been made to match the accepted version in Eur. Phys. J.

    Observational constraints on late-time Lambda(t) cosmology

    Full text link
    The cosmological constant, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.Comment: Some important revisions. To appear in Physical Review

    Surface Effects on the Mechanical Elongation of AuCu Nanowires: De-alloying and the Formation of Mixed Suspended Atomic Chains

    Full text link
    We report here an atomistic study of the mechanical deformation of AuxCu(1-x) atomic-size wires (NWs) by means of high resolution transmission electron microscopy (HRTEM) experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.Comment: Accepted to Journal of Applied Physics (JAP

    Bound vortex states and exotic lattices in multi-component Bose-Einstein condensates: The role of vortex-vortex interaction

    Full text link
    We numerically study the vortex-vortex interaction in multi-component homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii theory. We provide strong evidences that pairwise vortex interaction captures the underlying mechanisms which determine the geometric configuration of the vortices, such as different lattices in many-vortex states, as well as the bound vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss and apply our theoretical approach to investigate intra- and inter-component vortex-vortex interactions in two- and three-component Bose-Einstein condensates, thereby shedding light on the formation of the exotic vortex configurations. These results correlate with current experimental efforts in multi-component Bose-Einstein condensates, and the understanding of the role of vortex interactions in multiband superconductors.Comment: Published in PR
    • …
    corecore