1,545 research outputs found

    The Structure of Graphene on Graphene/C60/Cu Interfaces: A Molecular Dynamics Study

    Full text link
    Two experimental studies reported the spontaneous formation of amorphous and crystalline structures of C60 intercalated between graphene and a substrate. They observed interesting phenomena ranging from reaction between C60 molecules under graphene to graphene sagging between the molecules and control of strain in graphene. Motivated by these works, we performed fully atomistic reactive molecular dynamics simulations to study the formation and thermal stability of graphene wrinkles as well as graphene attachment to and detachment from the substrate when graphene is laid over a previously distributed array of C60 molecules on a copper substrate at different values of temperature. As graphene compresses the C60 molecules against the substrate, and graphene attachment to the substrate between C60s ("C60s" stands for plural of C60) depends on the height of graphene wrinkles, configurations with both frozen and non-frozen C60s structures were investigated in order to verify the experimental result of stable sagged graphene when the distance between C60s is about 4 nm and height of graphene wrinkles is about 0.8 nm. Below the distance of 4 nm between C60s, graphene becomes locally suspended and less strained. We show that this happens when C60s are allowed to deform under the compressive action of graphene. If we keep the C60s frozen, spontaneous "blanketing" of graphene happens only when the distance between them are equal or above 7 nm. Both above results for the existence of stable sagged graphene for C60 distances of 4 or 7 nm are shown to agree with a mechanical model relating the rigidity of graphene to the energy of graphene-substrate adhesion. In particular, this study might help the development of 2D confined nanoreactors that are considered in literature to be the next advanced step on chemical reactions.Comment: 7 pages, 4 figure

    Surface Effects on the Mechanical Elongation of AuCu Nanowires: De-alloying and the Formation of Mixed Suspended Atomic Chains

    Full text link
    We report here an atomistic study of the mechanical deformation of AuxCu(1-x) atomic-size wires (NWs) by means of high resolution transmission electron microscopy (HRTEM) experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.Comment: Accepted to Journal of Applied Physics (JAP

    A framework for certification of large-scale component-based parallel computing systems in a cloud computing platform for HPC services

    Get PDF
    This paper addresses the verification of software components in the context of their orchestration to build cloud-based scientific applications with high performance computing requirements. In such a scenario, components are often supplied by different sources and their cooperation rely on assumptions of conformity with their published behavioral interfaces. Therefore, a faulty or ill-designed component, failing to obey to the envisaged behavioral requirements, may have dramatic consequences in practice. Certifier components, introduced in this paper, implement a verification as a service framework and are able to access the implementation of other components and verify their consistency with respect to a number of functional, safety and liveness requirements relevant to a specific application or a class of them. It is shown how certifier components can be smoothly integrated in HPC Shelf, a cloud-based platform for high performance computing in which different sorts of users can design, deploy and execute scientific applications.SmartEGOV: Harnessing EGOV for Smart Governance (Foundations, methods, Tools) / NORTE-01-0145-FEDER000037, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (EFD

    Caracterização do sistema produtivo da mangabeira no município de Itaporanga D'Ajuda, Sergipe.

    Get PDF
    bitstream/CPATC-2010/21506/1/bp-48.pd

    Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Get PDF
    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host

    Autonomous Agent for Beyond Visual Range Air Combat: A Deep Reinforcement Learning Approach

    Full text link
    This work contributes to developing an agent based on deep reinforcement learning capable of acting in a beyond visual range (BVR) air combat simulation environment. The paper presents an overview of building an agent representing a high-performance fighter aircraft that can learn and improve its role in BVR combat over time based on rewards calculated using operational metrics. Also, through self-play experiments, it expects to generate new air combat tactics never seen before. Finally, we hope to examine a real pilot's ability, using virtual simulation, to interact in the same environment with the trained agent and compare their performances. This research will contribute to the air combat training context by developing agents that can interact with real pilots to improve their performances in air defense missions
    corecore