11 research outputs found
GEF-H1 Couples Nocodazole-induced Microtubule Disassembly to Cell Contractility via RhoA
The RhoA GTPase plays a vital role in assembly of contractile actin-myosin filaments (stress fibers) and of associated focal adhesion complexes of adherent monolayer cells in culture. GEF-H1 is a microtubule-associated guanine nucleotide exchange factor that activates RhoA upon release from microtubules. The overexpression of GEF-H1 deficient in microtubule binding or treatment of HeLa cells with nocodazole to induce microtubule depolymerization results in Rho-dependent actin stress fiber formation and contractile cell morphology. However, whether GEF-H1 is required and sufficient to mediate nocodazole-induced contractility remains unclear. We establish here that siRNA-mediated depletion of GEF-H1 in HeLa cells prevents nocodazole-induced cell contraction. Furthermore, the nocodazole-induced activation of RhoA and Rho-associated kinase (ROCK) that mediates phosphorylation of myosin regulatory light chain (MLC) is impaired in GEF-H1–depleted cells. Conversely, RhoA activation and contractility are rescued by reintroduction of siRNA-resistant GEF-H1. Our studies reveal a critical role for a GEF-H1/RhoA/ROCK/MLC signaling pathway in mediating nocodazole-induced cell contractility
Centrosome Reorientation in Wound-Edge Cells Is Cell Type Specific
The reorientation of the microtubule organizing center during cell migration into a wound in the monolayer was directly observed in living wound-edge cells expressing γ-tubulin tagged with green fluorescent protein. Our results demonstrate that in CHO cells, the centrosome reorients to a position in front of the nucleus, toward the wound edge, whereas in PtK cells, the centrosome lags behind the nucleus during migration into the wound. In CHO cells, the average rate of centrosome motion was faster than that of the nucleus; the converse was true in PtK cells. In both cell lines, centrosome motion was stochastic, with periods of rapid motion interspersed with periods of slower motion. Centrosome reorientation in CHO cells required dynamic microtubules and cytoplasmic dynein/dynactin activity and could be prevented by altering cell-to-cell or cell-to-substrate adhesion. Microtubule marking experiments using photoactivation of caged tubulin demonstrate that microtubules are transported in the direction of cell motility in both cell lines but that in PtK cells, microtubules move individually, whereas their movement is more coherent in CHO cells. Our data demonstrate that centrosome reorientation is not required for directed migration and that diverse cells use distinct mechanisms for remodeling the microtubule array during directed migration
Dendritic Fibroblasts in Three-dimensional Collagen Matrices
Cell motility determines form and function of multicellular organisms. Most studies on fibroblast motility have been carried out using cells on the surfaces of culture dishes. In situ, however, the environment for fibroblasts is the three-dimensional extracellular matrix. In the current research, we studied the morphology and motility of human fibroblasts embedded in floating collagen matrices at a cell density below that required for global matrix remodeling (i.e., contraction). Under these conditions, cells were observed to project and retract a dendritic network of extensions. These extensions contained microtubule cores with actin concentrated at the tips resembling growth cones. Platelet-derived growth factor promoted formation of the network; lysophosphatidic acid stimulated its retraction in a Rho and Rho kinase-dependent manner. The dendritic network also supported metabolic coupling between cells. We suggest that the dendritic network provides a mechanism by which fibroblasts explore and become interconnected to each other in three-dimensional space