85 research outputs found

    Spectroscopy and near-infrared photometry of the helium nova V445 Puppis

    Get PDF
    Nova Puppis 2000 (V445 Pup) has been proposed as the first example of a helium nova. Recent optical spectroscopy of V445 Pup at V=19.91 mag obtained with IMACS on the 6.5-m Magellan telescope, shows that the spectrum consists of HeI, [OI], [OII] and [OIII] emission lines and no hydrogen is present. The spectroscopy shows an expanding nova shell with blue- and redshifted velocity components around +/- 850 km/s and +/- 1600 km/s. Images taken with Magellan under very good seeing conditions (FWHM ~ 0.6") shows V445 Pup to be extended (full width at zero intensity ~ 1.9") and elongated (position angle ~ 150deg). We have followed the secular evolution of V445 Pup since the decline from (optical) maximum, at near-infrared wavelengths (J, H and Ks) using the Infrared Survey Facility (IRSF) at the Sutherland site of the South African Astronomical Observatory. We find that V445 Pup is still covered by a dense dust shell more than three years after its outburst.Comment: 2 pages, 1 figure. To appear in `The Astrophysics of Cataclysmic Variables and Related Objects', eds. J.M. Hameury and J.P. Lasota (ASP Conf. Ser.

    Precision Ephemerides For Gravitational Wave Searches: II. Cyg X-2

    Get PDF
    Accreting neutron stars in low-mass X-ray binaries (LMXBs) are candidate high-frequency persistent gravitational wave sources. These may be detectable with next generation interferometers such as Advanced LIGO/VIRGO within this decade. However, the search sensitivity is expected to be limited principally by the uncertainty in the binary system parameters. We combine new optical spectroscopy of Cyg X-2 obtained with the Liverpool Telescope (LT) with available historical radial velocity data, which gives us improved orbital parameter uncertainties based on a 44-year baseline. We obtained an improvement of a factor of 2.6 in the orbital period precision and a factor of 2 in the epoch of inferior conjunction T_0. The updated orbital parameters imply a mass function of 0.65 +/- 0.01 M_sun, leading to a primary mass (M_1) of 1.67 +/- 0.22 M_sun (for i=62.5 +/- 4 deg). In addition, we estimate the likely orbital parameter precision through to the expected Advanced LIGO and VIRGO detector observing period and quantify the corresponding improvement in sensitivity via the required number of templates.Comment: 7 pages, 3 figures, accepted for publication by Ap

    A Doppler Map and Mass-ratio Constraint for the Black-Hole X-ray Nova Ophiuchi 1977

    Get PDF
    We have reanalyzed Keck observations of Nova Oph 1977 to extend the work done by Filippenko et al. (1997), who recently determined a mass function f(M_x) = 4.86 +/- 0.13 M_o for the compact object. We constrain the rotational broadening, v sin i < 79 km/s, at the 90% confidence level, which gives a mass ratio q < 0.053. The K-type companion star of Nova Oph 1977 contributes 28-37% of the light at red wavelengths. The abnormal LiI 6708 absorption line from the companion star is not detected (EW < 0.12 A), in contrast to four other X-ray binaries. An Halpha Doppler image of the system shows emission from the companion star in addition to the accretion disk.Comment: 14 pages of text and tables plus 3 figures, to appear in the Astronomical Journa

    The Mass of the Black Hole in LMC X-3

    Get PDF
    We analyze a large set of new and archival photometric and spectroscopic observations of LMC X-3 to arrive at a self-consistent dynamical model for the system. Using echelle spectra obtained with the MIKE instrument on the 6.5m Magellan Clay telescope and the UVES instrument on the second 8.2m Very Large Telescope we find a velocity semiamplitude for the secondary star of K2=241.1±6.2K_2=241.1\pm 6.2 km s1^{-1}, where the uncertainty includes an estimate of the systematic error caused by X-ray heating. Using the spectra, we also find a projected rotational velocity of Vrotsini=118.5±6.6V_{\rm rot}\sin i=118.5\pm 6.6 km s1^{-1}. From an analysis of archival BB and VV light curves as well as new BB and VV light curves from the SMARTS 1.3m telescope, we find an inclination of i=69.84±0.37i=69.84\pm 0.37^{\circ} for models that do not include X-ray heating and an inclination of i=69.24±0.72i=69.24\pm 0.72^{\circ} for models that incorporate X-ray heating. Adopting the latter inclination measurement, we find masses of 3.63±0.57M3.63\pm 0.57\,M_{\odot} and 6.98±0.56M6.98\pm 0.56\,M_{\odot} for the companion star and the black hole, respectively. We briefly compare our results with earlier work and discuss some of their implications.Comment: 31 pages, 15 figures, substantial revisions, ApJ, accepte

    A Dynamical Study of the Black Hole X-ray Binary Nova Muscae 1991

    Full text link
    We present a dynamical study of the Galactic black hole binary system Nova Muscae 1991 (GS/GRS 1124-683). We utilize 72 high resolution Magellan Echellette (MagE) spectra and 72 strictly simultaneous V-band photometric observations; the simultaneity is a unique and crucial feature of this dynamical study. The data were taken on two consecutive nights and cover the full 10.4-hour orbital cycle. The radial velocities of the secondary star are determined by cross-correlating the object spectra with the best-match template spectrum obtained using the same instrument configuration. Based on our independent analysis of five orders of the echellette spectrum, the semi-amplitude of the radial velocity of the secondary is measured to be K_2 = 406.8+/-2.7 km/s, which is consistent with previous work, while the uncertainty is reduced by a factor of 3. The corresponding mass function is f(M) = 3.02+/-0.06 M_\odot. We have also obtained an accurate measurement of the rotational broadening of the stellar absorption lines (v sin i = 85.0+/-2.6 km/s) and hence the mass ratio of the system q = 0.079+/-0.007. Finally, we have measured the spectrum of the non-stellar component of emission that veils the spectrum of the secondary. In a future paper, we will use our veiling-corrected spectrum of the secondary and accurate values of K_2 and q to model multi-color light curves and determine the systemic inclination and the mass of the black hole.Comment: ApJ accepted version; minor revision; added a subsection about systematic uncertaintie

    Tomography of X-ray Nova Muscae 1991: Evidence for ongoing mass transfer and stream-disc overflow

    Full text link
    We present a spectroscopic analysis of the black hole binary Nova Muscae 1991 in quiescence using data obtained in 2009 with MagE on the Magellan Clay telescope and in 2010 with IMACS on the Magellan Baade telescope at the Las Campanas Observatory. Emission from the disc is observed in H alpha, H beta and Ca II (8662 A). A prominent hotspot is observed in the Doppler maps of all three emission lines. The existence of this spot establishes ongoing mass transfer from the donor star in 2009-2010 and, given its absence in the 1993-1995 observations, demonstrates the presence of a variable hotspot in the system. We find the radial distance to the hotspot from the black hole to be consistent with the circularization radius. Our tomograms are suggestive of stream-disc overflow in the system. We also detect possible Ca II (8662 A) absorption from the donor star.Comment: 10 pages, 11 figures, 1 table. Accepted for publication in MNRA

    The X-ray Position and Optical Counterpart of the Accretion-Powered Millisecond Pulsar XTE J1814-338

    Get PDF
    We report the precise optical and X-ray localization of the 3.2 ms accretion-powered X-ray pulsar XTE J1814-338 with data from the Chandra X-Ray Observatory as well as optical observations conducted during the 2003 June discovery outburst. Optical imaging of the field during the outburst of this soft X-ray transient reveals an R = 18 star at the X-ray position. This star is absent (R > 20) from an archival 1989 image of the field and brightened during the 2003 outburst, and we therefore identify it as the optical counterpart of XTE J1814-338. The best source position derived from optical astrometry is R.A. = 18h13m39.s04, Dec.= -33d46m22.3s (J2000). The featureless X-ray spectrum of the pulsar in outburst is best fit by an absorbed power-law (with photon index = 1.41 +- 0.06) plus blackbody (with kT = 0.95 +- 0.13 keV) model, where the blackbody component contributes approximately 10% of the source flux. The optical broad-band spectrum shows evidence for an excess of infrared emission with respect to an X-ray heated accretion disk model, suggesting a significant contribution from the secondary or from a synchrotron-emitting region. A follow-up observation performed when XTE J1814-338 was in quiescence reveals no counterpart to a limiting magnitude of R = 23.3. This suggests that the secondary is an M3 V or later-type star, and therefore very unlikely to be responsible for the soft excess, making synchroton emission a more reasonable candidate.Comment: Accepted for publication in ApJ. 6 pages; 3 figure
    corecore