32 research outputs found
Connectivity Series at RIT- Developing & Delivering an Effective Professional Development Workshop Series for Women Faculty in STEM
In science, technology, engineering and math (STEM) disciplines within the United States; women faculty are underrepresented within many disciplines including engineering, computer science, and physics. At a large private university, RIT, the ADVANCE institutional transformation project (supported by NSF Award No. 1209115), referred to as Advance RIT, aims to increase the representation and advancement of women STEM faculty (which includes social and behavioral sciences, SBS) by removing barriers to resources that support career success and by creating new interventions and resources. This paper reports on the design, delivery and evaluation of a professional development workshop series, called the Connectivity Series, which is a vital initiative within this large-scale, multi-year, strategic institutional transformation project. The workshop series consists of programs to promote the recruitment, retention, and advancement of women faculty. The project team developed workshop themes based upon the results of a faculty climate survey and a literature review as part of a previously conducted NSF ADVANCE funded self-study (0811076). Project researchers created the Connectivity Series for all tenure-track women faculty on campus as well as targeted workshops for women of color and deaf and hard of hearing women faculty. All disciplines represented within the university (STEM and non-STEM) have been identified as the target audience for workshop offerings due to the high prevalence of STEM disciplines within the university. Program assessment and evaluation results are presented. In addition, a sustainability plan is outlined for continuation of these targeted workshops beyond the five-year grant funding period
Training in crisis communication and volcanic eruption forecasting:Design and evaluation of an authentic role-play simulation
We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students
in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team)
focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the
group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency
response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing
upper-year undergraduate studentsâ transferable and geologic reasoning skills. An important goal of the simulation was
specifically to improve studentsâ science communication through interdisciplinary team discussions, jointly prepared,
and delivered media releases, and real-time, high-pressure, press conferences.
By playing roles, students experienced the specific responsibilities of a professional within authentic organisational
structures. A qualitative, design-based educational research study was carried out to assess the overall student experience
and self-reported learning of skills. A pilot and four subsequent iterations were investigated.
Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning
experience and reported improved skills. Data from classroom observations and interviews indicate that the students
valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics
(within, and between the teams) varied depending on the studentsâ background, preparedness, and personality.
During early iterations, observation and interviews from students and instructors indicate that some of the goals of the
simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C)
appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of
Iterations 3 and 4 showed an overall improvement in the studentsâ skills and goals being reached.
A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence
in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived
abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed
at adapting this curricula to new volcanic and earthquake scenarios