42 research outputs found

    Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo.

    Get PDF
    Dopamine (DA) deficiency has been implicated in Lesch-Nyhan disease (LND), a genetic disorder that is characterized by hyperuricemia, choreoathetosis, dystonia, and compulsive self-injury. To establish that DA deficiency is present in LND, the ligand WIN-35,428, which binds to DA transporters, was used to estimate the density of DA-containing neurons in the caudate and putamen of six patients with classic LND. Comparisons were made with 10 control subjects and 3 patients with Rett syndrome. Three methods were used to quantify the binding of the DA transporter so that its density could be estimated by a single dynamic positron emission tomography study. These approaches included the caudate- or putamen-to-cerebellum ratio of ligand at 80-90 min postinjection, kinetic analysis of the binding potential [Bmax/(Kd x Vd)] using the assumption of equal partition coefficients in the striatum and the cerebellum, and graphical analysis of the binding potential. Depending on the method of analysis, a 50-63% reduction of the binding to DA transporters in the caudate, and a 64-75% reduction in the putamen of the LND patients was observed compared to the normal control group. When LND patients were compared to Rett syndrome patients, similar reductions were found in the caudate (53-61%) and putamen (67-72%) in LND patients. Transporter binding in Rett syndrome patients was not significantly different from the normal controls. Finally, volumetric magnetic resonance imaging studies detected a 30% reduction in the caudate volume of LND patients. To ensure that a reduction in the caudate volume would not confound the results, a rigorous partial volume correction of the caudate time activity curve was performed. This correction resulted in an even greater decrease in the caudate-cerebellar ratio in LND patients when contrasted to controls. To our knowledge, these findings provide the first in vivo documentation of a dopaminergic reduction in LND and illustrate the role of positron emission tomography imaging in investigating neurodevelopmental disorders

    Imaging of Glial Cell Activation and White Matter Integrity in Brains of Active and Recently Retired National Football League Players

    Get PDF
    Importance: Microglia, the resident immune cells of the central nervous system, play an important role in the brain\u27s response to injury and neurodegenerative processes. It has been proposed that prolonged microglial activation occurs after single and repeated traumatic brain injury, possibly through sports-related concussive and subconcussive injuries. Limited in vivo brain imaging studies months to years after individuals experience a single moderate to severe traumatic brain injury suggest widespread persistent microglial activation, but there has been little study of persistent glial cell activity in brains of athletes with sports-related traumatic brain injury. Objective: To measure translocator protein 18 kDa (TSPO), a marker of activated glial cell response, in a cohort of National Football League (NFL) players and control participants, and to report measures of white matter integrity. Design, Setting, and Participants: This cross-sectional, case-control study included young active (n = 4) or former (n = 10) NFL players recruited from across the United States, and 16 age-, sex-, highest educational level-, and body mass index-matched control participants. This study was conducted at an academic research institution in Baltimore, Maryland, from January 29, 2015, to February 18, 2016. Main Outcomes and Measures: Positron emission tomography-based regional measures of TSPO using [11C]DPA-713, diffusion tensor imaging measures of regional white matter integrity, regional volumes on structural magnetic resonance imaging, and neuropsychological performance. Results: The mean (SD) ages of the 14 NFL participants and 16 control participants were 31.3 (6.1) years and 27.6 (4.9) years, respectively. Players reported a mean (SD) of 7.0 (6.4) years (range, 1-21 years) since the last self-reported concussion. Using [11C]DPA-713 positron emission tomographic data from 12 active or former NFL players and 11 matched control participants, the NFL players showed higher total distribution volume in 8 of the 12 brain regions examined (P \u3c .004). We also observed limited change in white matter fractional anisotropy and mean diffusivity in 13 players compared with 15 control participants. In contrast, these young players did not differ from control participants in regional brain volumes or in neuropsychological performance. Conclusions and Relevance: The results suggest that localized brain injury and repair, indicated by higher TSPO signal and white matter changes, may be associated with NFL play. Further study is needed to confirm these findings and to determine whether TSPO signal and white matter changes in young NFL athletes are related to later onset of neuropsychiatric symptoms
    corecore