1,730 research outputs found

    A Marine Radar Wind Sensor

    Get PDF
    A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are derived using a neural network by parameterizing the relationship between the wind vector and the normalized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the research platform FINO-I, which provides environmental data such as wind measurements at different heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters. The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s^−1. In contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean surface makes the system independent of the sensors’ motion and installation height as well as the effects due to platform-induced turbulence

    Thermal Creation of Electron Spin Polarization in n-Type Silicon

    Get PDF
    Conversion of heat into a spin-current in electron doped silicon can offer a promising path for spin-caloritronics. Here we create an electron spin polarization in the conduction band of n-type silicon by producing a temperature gradient across a ferromagnetic tunnel contact. The substrate heating experiments induce a large spin signal of 95 Ό\muV, corresponding to 0.54 meV spin-splitting in the conduction band of n-type silicon by Seebeck spin tunneling mechanism. The thermal origin of the spin injection has been confirmed by the quadratic scaling of the spin signal with the Joule heating current and linear dependence with the heating power

    Adhesion of coagulase-negative staphylococci to methacrylate polymers and copolymers

    Get PDF
    Adhesion of coagulasef-negative staphylococci (CNS) was studied onto a homologous series of methacrylate polymers and copolymers. The materials varied in wettability (contact angles) and were either positively or negatively charged (zetapotential). Bacterial adhesion experiments performed in a parallel-plate perfusion system showed that positively charged TMAEMA-Cl copolymers significantly promoted the adhesion of CNS as compared with all other methacrylate (co)polymers tested. The bacterial adhesion rates onto the positively charged surfaces are diffusion-controlled, whereas those onto the surfaces with a negative zeta-potential are more surface-reaction-controlled due to the presence of a potential energy barrier. The bacterial adhesion rates onto various poly (alkyl methacrylates) were similar. The number of adhering bacteria onto the negatively charged MMA/MAA copolymer did not differ from that onto pMMA, indicating that sufficient sites on the copolymer surface with the same potential energy barrier as that on pMMA, were available for adhesion. Decreasing rates of adhesion of CNS were observed onto MMA/HEMA copolymers with increasing HEMA content coinciding with increasing hydrophilicity. Low plateau values for the bacterial adhesion were observed on 50MMA/50HEMA, pHEMA, and 85HEMA/15MAA, indicating that the adhesion onto these materials was reversible. Four CNS strains with different surface characteristics all showed higher numbers of adhering bacteria onto 85MMA/15TMAEMA-Cl than onto 85MMA/15MAA and pMMA

    Efficient Spin Injection into Silicon and the Role of the Schottky Barrier

    Get PDF
    Implementing spin functionalities in Si, and understanding the fundamental processes of spin injection and detection, are the main challenges in spintronics. Here we demonstrate large spin polarizations at room temperature, 34% in n-type and 10% in p-type degenerate Si bands, using a narrow Schottky and a SiO2 tunnel barrier in a direct tunneling regime. Furthermore, by increasing the width of the Schottky barrier in non-degenerate p-type Si, we observed a systematic sign reversal of the Hanle signal in the low bias regime. This dramatic change in the spin injection and detection processes with increased Schottky barrier resistance may be due to a decoupling of the spins in the interface states from the bulk band of Si, yielding a transition from a direct to a localized state assisted tunneling. Our study provides a deeper insight into the spin transport phenomenon, which should be considered for electrical spin injection into any semiconductor

    No relationship between the cell surface hydrophobicity of coagulase-negative staphylococci and their ability to adhere onto fluorinated poly(ethylene-propylene)

    Get PDF
    The cell surface hydrophobicity of 14 encapsulated and 21 non-encapsulated coagulase-negative staphylococci (CN staph) as determined with the salt aggregation test (SAT) as well as with the xylene-water method ranged widely. Non-encapsulated strains adhered well onto fluorinated poly(ethylene-propylene) (FEP), irrespective of the hydrophobicity of the cell surface. The ability of the encapsulated strains to adhere onto FEP differed also considerably, but no correlation between the number of adherent bacteria and the cell surface hydrophobicity was observed
    • 

    corecore