8 research outputs found

    Evolution of the HIV-1 envelope glycoproteins with a disulfide bond between gp120 and gp41

    Get PDF
    BACKGROUND: We previously described the construction of an HIV-1 envelope glycoprotein complex (Env) that is stabilized by an engineered intermolecular disulfide bond (SOS) between gp120 and gp41. The modified Env protein antigenically mimics the functional wild-type Env complex. Here, we explore the effects of the covalent gp120 – gp41 interaction on virus replication and evolution. RESULTS: An HIV-1 molecular clone containing the SOS Env gene was only minimally replication competent, suggesting that the engineered disulfide bond substantially impaired Env function. However, virus evolution occurred in cell culture infections, and it eventually always led to elimination of the intermolecular disulfide bond. In the course of these evolution studies, we identified additional and unusual second-site reversions within gp41. CONCLUSIONS: These evolution paths highlight residues that play an important role in the interaction between gp120 and gp41. Furthermore, our results suggest that a covalent gp120 – gp41 interaction is incompatible with HIV-1 Env function, probably because this impedes conformational changes that are necessary for fusion to occur, which may involve the complete dissociation of gp120 from gp41

    The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV-1 envelope glycoprotein gp120, which mediates viral attachment to target cells, consists for ~50% of sugar, but the role of the individual sugar chains in various aspects of gp120 folding and function is poorly understood. Here we studied the role of the carbohydrate at position 386. We identified a virus variant that had lost the 386 glycan in an evolution study of a mutant virus lacking the disulfide bond at the base of the V4 domain.</p> <p>Results</p> <p>The 386 carbohydrate was not essential for folding of <it>wt </it>gp120. However, its removal improved folding of a gp120 variant lacking the 385–418 disulfide bond, suggesting that it plays an auxiliary role in protein folding in the presence of this disulfide bond. The 386 carbohydrate was not critical for gp120 binding to dendritic cells (DC) and DC-mediated HIV-1 transmission to T cells. In accordance with previous reports, we found that N386 was involved in binding of the mannose-dependent neutralizing antibody 2G12. Interestingly, in the presence of specific substitutions elsewhere in gp120, removal of N386 did not result in abrogation of 2G12 binding, implying that the contribution of N386 is context dependent. Neutralization by soluble CD4 and the neutralizing CD4 binding site (CD4BS) antibody b12 was significantly enhanced in the absence of the 386 sugar, indicating that this glycan protects the CD4BS against antibodies.</p> <p>Conclusion</p> <p>The carbohydrate at position 386 is not essential for protein folding and function, but is involved in the protection of the CD4BS from antibodies. Removal of this sugar in the context of trimeric Env immunogens may therefore improve the elicitation of neutralizing CD4BS antibodies.</p

    The effect of chronic kidney disease on tissue formation of in situ tissue-engineered vascular grafts

    Get PDF
    Vascular in situ tissue engineering encompasses a single-step approach with a wide adaptive potential and true off-the-shelf availability for vascular grafts. However, a synchronized balance between breakdown of the scaffold material and neo-tissue formation is essential. Chronic kidney disease (CKD) may influence this balance, lowering the usability of these grafts for vascular access in end-stage CKD patients on dialysis. We aimed to investigate the effects of CKD on in vivo scaffold breakdown and tissue formation in grafts made of electrospun, modular, supramolecular polycarbonate with ureido-pyrimidinone moieties (PC-UPy). We implanted PC-UPy aortic interposition grafts (n = 40) in a rat 5/6th nephrectomy model that mimics systemic conditions in human CKD patients. We studied patency, mechanical stability, extracellular matrix (ECM) components, total cellularity, vascular tissue formation, and vascular calcification in CKD and healthy rats at 2, 4, 8, and 12 weeks post-implantation. Our study shows successful in vivo application of a slow-degrading small-diameter vascular graft that supports adequate in situ vascular tissue formation. Despite systemic inflammation associated with CKD, no influence of CKD on patency (Sham: 95% vs CKD: 100%), mechanical stability, ECM formation (Sirius red +, Sham 16.5% vs CKD 25.0%-p:0.83), tissue composition, and immune cell infiltration was found. We did find a limited increase in vascular calcification at 12 weeks (Sham 0.08% vs CKD 0.80%-p:0.02) in grafts implanted in CKD animals. However, this was not associated with increased stiffness in the explants. Our findings suggest that disease-specific graft design may not be necessary for use in CKD patients on dialysis. </p

    Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide:Implications for chronic kidney disease pathophysiology

    Get PDF
    The uremic solutes p-cresyl sulfate (pCS) and p-cresyl glucuronide (pCG) accumulate in patients with chronic kidney disease (CKD), and might contribute to disease progression. Moreover, retention of these solutes may directly be related to renal tubular function. Here, we investigated the role of the efflux transporters Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) in pCS and pCG excretion, and studied the impact of both solutes on the phenotype of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC). Our results show that p-cresol metabolites accumulate during CKD, with a shift from sulfation to glucuronidation upon progression. Moreover, pCS inhibited the activity of MRP4 by 40% and BCRP by 25%, whereas pCG only reduced MRP4 activity by 75%. Moreover, BCRP-mediated transport of both solutes was demonstrated. Exposure of ciPTEC to pCG caused epithelial-to-mesenchymal transition, indicated by increased expression of vimentin and Bcl-2, and diminished E-cadherin. This was associated with altered expression of key tubular transporters. In conclusion, BCRP is likely involved in the renal excretion of both solutes, and pCG promotes phenotypical changes in ciPTEC, supporting the notion that uremic toxins may be involved in CKD progression by negatively affecting renal tubule cell phenotype and functionality

    Evolution Rescues Folding of Human Immunodeficiency Virus-1 Envelope Glycoprotein GP120 Lacking a Conserved Disulfide Bond

    No full text
    The majority of eukaryotic secretory and membrane proteins contain disulfide bonds, which are strongly conserved within protein families because of their crucial role in folding or function. The exact role of these disulfide bonds during folding is unclear. Using virus-driven evolution we generated a viral glycoprotein variant, which is functional despite the lack of an absolutely conserved disulfide bond that links two antiparallel β-strands in a six-stranded β-barrel. Molecular dynamics simulations revealed that improved hydrogen bonding and side chain packing led to stabilization of the β-barrel fold, implying that β-sheet preference codirects glycoprotein folding in vivo. Our results show that the interactions between two β-strands that are important for the formation and/or integrity of the β-barrel can be supported by either a disulfide bond or β-sheet favoring residues
    corecore