157 research outputs found
Lignin‐derived hard carbon anode with a robust solid electrolyte interphase for boosted sodium storage performance
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost, relatively low working voltage, and satisfactory specific capacity. However, it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources. In addition, the solid electrolyte interphase (SEI) is subjected to continuous rupture during battery cycling, leading to fast capacity decay. Herein, a lignin-based hard carbon with robust SEI is developed to address these issues, effectively killing two birds with one stone. An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon, which demonstrated an ultrahigh sodium storage capacity of 359 mAh g−1. It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin, dense, and organic-rich SEI. Benefiting from these merits, the as-developed SEI shows fast Na+ transfer at the interphases and enhanced structural stability, thus preventing SEI rupture and reformation, and ultimately leading to a comprehensive improvement in sodium storage performance
Exploring the molecular landscape of osteosarcoma through PTTG family genes using a detailed multi-level methodology
BackgroundOsteosarcoma (OS) poses a significant clinical challenge, necessitating a comprehensive exploration of its molecular underpinnings.MethodsThis study explored the roles of PTTG family genes (PTTG1, PTTG2, and PTTG3P) in OS, employing a multifaceted approach encompassing molecular experiments, including OS cell lines culturing, RT-qPCR, bisulfite and Whole Exome Sequencing (WES) and in silico experiments, including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets-based validation, overall survival, gene enrichment, functional assays, and molecular docking analyses.ResultsOur findings reveal a consistent up-regulation of PTTG genes in OS cell lines, supported by RT-qPCR experiments and corroborated across various publically available expression datasets databases. Importantly, ROC curve analyses highlight their potential as diagnostic markers. Moving beyond expression profiles, we unveil the epigenetic landscape by demonstrating significant hypomethylation of CpG islands associated with PTTG genes in OS. The negative correlation between methylation status and mRNA expression emphasizes the regulatory role of promoter methylation in PTTG gene expression. Contrary to expectations, genetic mutations in PTTG genes are rare in OS, with only benign mutations observed. Moreover, functional assays also confirmed the oncogenic roles of the PTTG gene in the development of OS. Lastly, we also revealed that Calcitriol is the most appropriate drug that can be utilized to treat OS in the context of PTTG genes.ConclusionThe identification of PTTG genes as potential diagnostic markers and their association with epigenetic alterations opens new avenues for understanding OS pathogenesis and developing targeted therapies. As we navigate the complex landscape of OS, this study contributes essential insights that may pave the way for improved diagnostic and therapeutic strategies in its management
Robust attitude stabilization controller design for quadrotor systems with multiple uncertainties and delays
Real-Time Implementation of Decoupled Controllers for Multirotor Aircrafts
In this paper, a practical controller design method is presented to control six degrees of freedom multirotor aircrafts-quadrotors. The quadrotor system is divided into four subsystems; that is, the longitudinal, lateral, yaw, and height subsystems. Then, a linear and decoupled nominal model is obtained for each subsystem, whereas coupling and nonlinear dynamics, parametric perturbations, and external disturbances are considered as uncertainties. For each subsystem, a decoupled robust controller is then proposed. Although there exist coupling between each channel, the output tracking errors of the four subsystems are proven to ultimately converge into a-priori set neighborhood of the origin. Finally, real-time implementation results of the decoupled controller are given to demonstrate its viability and applicability
Development of a Questionnaire to Assess Nursing Competencies for the Care of People with Psychiatric Disabilities in a Hospital Environment
Maize Drought and Flood Disaster Hazard Identification and Its Response to Climate Change in Jilin,China
- …
