80 research outputs found

    Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering

    Get PDF
    A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10 μ, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-β1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48 % of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-β1 loaded gelatin microparticle pellets was constant during the 21 days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-β1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-β1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue.JLGR acknowledge the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01 (including the FEDER financial support). The support of the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative of the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) is also acknowledged

    Cells Involved in Urethral Tissue Engineering: Systematic Review

    No full text
    The urethra is part of the lower urinary tract and its main role is urine voiding. Its complex histological structure makes urethral tissue prone to various injuries with complicated healing processes that often lead to scar formation. Urethral stricture disease can affect both men and women. The occurrence of this pathology is more common in men and thus are previous research has been mainly oriented on male urethra reconstruction. However, commonly used surgical techniques show unsatisfactory results because of complications. The new and progressively developing field of tissue engineering offers promising solutions, which could be applied in the urethral regeneration of both men´s and women´s urethras. The presented systematic review article offers an overview of the cells that have been used in urethral tissue engineering so far. Urine-derived stem cells show a great perspective in respect to urethral tissue engineering. They can be easily harvested and are a promising autologous cell source for the needs of tissue engineering techniques. The presented review also shows the importance of mechanical stimuli application on maturating tissue. Sufficient vascularization and elimination of stricture formation present the biggest challenges not only in customary surgical management but also in tissue-engineering approaches

    Antibacterial N-Arylcinnamamides as Anti-inflammatory Agents

    No full text
    A series of ring-substituted N-arylcinnamamides was prepared, characterized, and investigatedfor their antimicrobial efficacy in detail [...

    Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes and neural cells

    No full text
    Unexpected toxicity in areas such as cardiotoxicity, hepatotoxicity and neurotoxicity is a serious complication of clinical therapy and one of the key causes for failure of promising drug candidates in development. Animal studies have been widely used for toxicology research to provide preclinical security evaluation of various therapeutic agents under development. Species differences in drug penetration of the blood-brain barrier, drug metabolism, and related toxicity contribute to fail of drug trials from animal models to human. The existing system for drug discovery has relied on immortalized cell lines, animal models of human disease, and clinical trials in humans. Moreover, drug candidates that are passed as being safe in the preclinical stage often show toxic effects during the clinical stage. Only around 16% drugs are approved for human use. Research on induced pluripotent stem cells (iPSCs) promises to enhance drug discovery and development by providing simple, reproducible, and economically effective tools for drug toxicity screening under development and, on the other hand, for studying the disease mechanism and pathways. In this review, we provide an overview of basic information about iPSCs, and discuss efforts aimed at the use of iPSC-derived hepatocytes, cardiomyocytes, and neural cells in drug discovery and toxicity testing.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The Role of Extracellular Matrix and Hydrogels in Mesenchymal Stem Cell Chondrogenesis and Cartilage Regeneration

    No full text
    Diseases associated with articular cartilage disintegration or loss are still therapeutically challenging. The traditional treatment approaches only alleviate the symptoms while potentially causing serious side effects. The limited self-renewal potential of articular cartilage provides opportunities for advanced therapies involving mesenchymal stem cells (MSCs) that are characterized by a remarkable regenerative capacity. The chondrogenic potential of MSCs is known to be regulated by the local environment, including soluble factors and the less discussed extracellular matrix (ECM) components. This review summarizes the process of chondrogenesis, and also the biological properties of the ECM mediated by mechanotransduction as well as canonical and non-canonical signaling. Our focus is also on the influence of the ECM’s physical parameters, molecular composition, and chondrogenic factor affinity on the adhesion, survival, and chondrogenic differentiation of MSCs. These basic biological insights are crucial for a more precise fabrication of ECM-mimicking hydrogels to improve cartilage tissue reconstruction. Lastly, we provide an overview of hydrogel classification and characterization. We also include the results from preclinical models combining MSCs with hydrogels for the treatment of cartilage defects, to support clinical application of this construct. Overall, it is believed that the proper combination of MSCs, hydrogels, and chondrogenic factors can lead to complex cartilage regeneration

    iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review

    No full text
    Bone disorders are a group of varied acute and chronic traumatic, degenerative, malignant or congenital conditions affecting the musculoskeletal system. They are prevalent in society and, with an ageing population, the incidence and impact on the population’s health is growing. Severe persisting pain and limited mobility are the major symptoms of the disorder that impair the quality of life in affected patients. Current therapies only partially treat the disorders, offering management of symptoms, or temporary replacement with inert materials. However, during the last few years, the options for the treatment of bone disorders have greatly expanded, thanks to the advent of regenerative medicine. Skeletal cell-based regeneration medicine offers promising reparative therapies for patients. Mesenchymal stem (stromal) cells from different tissues have been gradually translated into clinical practice; however, there are a number of limitations. The introduction of reprogramming methods and the subsequent production of induced pluripotent stem cells provides a possibility to create human-specific models of bone disorders. Furthermore, human-induced pluripotent stem cell-based autologous transplantation is considered to be future breakthrough in the field of regenerative medicine. The main goal of the present paper is to review recent applications of induced pluripotent stem cells in bone disease modeling and to discuss possible future therapy options. The present article contributes to the dissemination of scientific and pre-clinical results between physicians, mainly orthopedist and thus supports the translation to clinical practice

    Models of formation and spread of fire to increase safety of road tunnels

    No full text
    Fire safety of tunnels is an important issue which must be solved carefully during all phases of preparation, building and operation of each road tunnel. In this paper some particular results of a joint research project of the Institute of Informatics of Slovak Academy of Sciences and the University of Zilina are summarized. Some specific phenomena caused by fire in a real highway tunnel in Slovakia endangering safe evacuation of people from the tunnel are illustrated

    Tissue Engineering and Stem Cell Therapy in Neurogenic Bladder Dysfunction: Current and Future Perspectives

    No full text
    Tissue engineering (TE) is a rapidly evolving biomedical discipline that can play an important role in treating neurogenic bladder dysfunction and compensating for current conventional options’ shortcomings. This review aims to analyze the current status of preclinical and clinical trials and discuss what could be expected in the future based on the current state of the art. Although most preclinical studies provide promising results on the effectiveness of TE and stem cell therapies, the main limitations are mainly the very slow translation of preclinical trials to clinical trials, lack of quality research on neurogenic preconditions of neurogenic bladder dysfunction outside of the spinal cord injury and varying therapeutic methods of the existing research that lacks a standardized approach

    Comparison of Digital Terrain and Surface Models for next Usage in a Chosen Locality

    No full text
    There are many possibilities for applications of digital terrain model and digital surface model due to their georeferenced character. The informational system of georeferenced data of Slovakia called ZBGIS gives new opportunities of downloading digital data in various formats. It is possible to download ortophotomosaics, ZBGIS raster at various scales, point cloud but digital terrain models and digital surface models with great possibilities of their application in GIS calculations as well
    • …
    corecore