69 research outputs found

    Trace Metals do not Accumulate over Time in The Edible Mediterranean Jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) from Urban Coastal Waters

    Get PDF
    Jellyfish as food represent a millennial tradition in Asia. Recently, jellyfish have also been proposed as a valuable source of protein in Western countries. To identify health risks associated with the potential human consumption of jellyfish as food, trace element accumulation was assessed in the gonads and umbrella tissues of the Mediterranean Rhizostoma pulmo (Macri, 1778), sampled over a period of 16 months along the shallow coastal waters a short distance from the city of Taranto, an area affected by metallurgic and oil refinery sources of pollution. Higher tissue concentrations of trace elements were usually detected in gonads than in umbrella tissue. In particular, significant differences in the toxic metalloid As, and in the metals Mn, Mo, and Zn, were observed among different tissues. The concentrations of vanadium were slightly higher in umbrella tissues than in gonads. No positive correlation was observed between element concentration and jellyfish size, suggesting the lack of bioaccumulation processes. Moreover, toxic element concentrations in R. pulmo were found below the threshold levels for human consumption allowed by Australian, USA, and EU Food Regulations. These results corroborate the hypothesis that R. pulmo is a safe, potentially novel food source, even when jellyfish are harvested from coastal areas affected by anthropogenic impacts

    Low-Intensity Light-Responsive Anticancer Activity of Platinum(II) Complex Nanocolloids on 2D and 3D In Vitro Cancer Cell Model

    Get PDF
    none8This study aimed to evaluate the therapeutic efficacy of low-intensity visible light responsive nanocolloids of a Pt-based drug using a 2D and three-dimensional (3D) in vitro cancer cell model. Biocompatible and biodegradable polymeric nanocolloids, obtained using the ultrasonication method coupled with Layer by Layer technology, were characterized in terms of size (100 ± 20 nm), physical stability, drug loading (78%), and photoactivation through spectroscopy studies. The in vitro biological effects were assessed in terms of efficacy, apoptosis induction, and DNA-Pt adducts formation. Biological experiments were performed both in dark and under visible light irradiation conditions, exploiting the complex photochemical properties. The light-stimuli responsive nanoformulation gave a significant enhancement in drug bioactivity. This allowed us to achieve satisfying results by using nanomolar drug concentration (50 nM), which was ineffective in darkness condition. Furthermore, our nanocolloids were validated in 3D in vitro spheroids using confocal microscopy and cytofluorimetric assay to compare their behavior on culture in 2D monolayers. The obtained results confirmed that these nanocolloids are promising tools for delivering Pt-based drugs.This study was supported by “Tecnopolo di Nanotecnologia e Fotonica per la Medicina di Precisione” (TECNOMED)-FISR/MIUR-CNR: delibera CIPE n.3449 del 7/08/2017, CUP: B83B17000010001; “Tecnopolo per la Medicina di precisione” (TecnoMed Puglia) - Regione Puglia: DGR n.2117 del 21/11/2018, CUP: B84I18000540002.openViviana Vergaro; Francesca Baldassarre; Federica De Castro; Danilo Migoni; Maria Michela Dell’Anna; Piero Mastrorilli; Francesco Paolo Fanizzi; Giuseppe CiccarellaVergaro, Viviana; Baldassarre, Francesca; DE CASTRO, Federica; Danilo, Migoni; Michela Dell’Anna, Maria; Mastrorilli, Piero; Fanizzi, Francesco Paolo; Ciccarella, Giusepp

    Wireframe DNA Origami for the Cellular Delivery of Platinum(II)-Based Drugs

    Get PDF
    The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes

    Analysis of the phytochemical composition of pomegranate fruit juices, peels and kernels: A comparative study on four cultivars grown in Southern Italy

    Get PDF
    The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods

    Vineyard establishment under exacerbated summer stress: effects of mycorrhization on rootstock agronomical parameters, leaf element composition and root-associated bacterial microbiota

    Get PDF
    Aims Climate change imposes adaptation of viticulture in risk areas, such as the Mediterranean. Mycorrhization is a valid tool to reduce the impact of the expected temperature/drought increase. Aim of this work was to test the effects of mycorrhization on grapevine vegetative growth, element composition of soil/leaves, and microbiota of bulk soil/rhizosphere/endorhiza, in the field, under exacerbated summer stress conditions obtained by planting the rootstocks in June. Methods 118 rooted cuttings of 1103-Paulsen (Vitis berlandieri × Vitis rupestris) were planted in Salento (Apulia, Southern Italy); about half of them were mycorrhized. Leaf Area Index, shoot growth and survival rate were monitored across two growing seasons. Leaf/shoot weight, chemical analysis of 25 elements, and 16S rRNA gene metabarcoding of bulk soil/rhizosphere/endorhiza were performed on subsamples. Results Mycorrhized plants showed significantly higher survival rate and growth, and accumulated significantly higher amounts of 18 elements. 27 endorhizal OTUs (representing ~20% of total sequences) were differently distributed (20 OTUs more abundant in mycorrhized plants); in the rhizosphere, instead, 12 OTUs (~2.5% of total sequences) were differently distributed. A few Actinobacterial OTUs were enriched by mycorrhization in the root endosphere; the same OTUs were the most correlated with the chemical elements, suggesting a role in element dynamics. These OTUs were not hub taxa of the co-occurrence network. Conclusions This work shed light onto the interactions between mycorrhiza and microbiome, in the context of plant element dynamics, which is useful to identify potential target candidates for biotechnological applications, thus moving towards a more sustainable, ecosystem-based viticulture

    Progress towards Sustainable Control of Xylella fastidiosa subsp. pauca in Olive Groves of Salento (Apulia, Italy)

    Get PDF
    Xylella fastidiosa subsp. pauca is the causal agent of "olive quick decline syndrome" in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex-Dentamet®-reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento

    A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy)

    Get PDF
    The bacterium Xylella fastidiosa subsp. pauca is associated with the “olive quick decline syndrome” in the Apulia region of southern Italy. To investigate control of this phytopathogen, a compound containing zinc and copper complexed with citric-acid hydracids (Dentamet®) was evaluated for in vitro and in planta bactericidal activity. Confocal laser scanning microscopy, fluorescent quantification and atomic emission spectroscopy were then used to determine if the compound reached the xylem networks of leaves, twigs and branches of olive, to release zinc and copper within the xylem. A 3-year field trial in an olive orchard containing mature Cellina di Nardò and Ogliarola salentina olive trees, and officially declared infected by X. fastidiosa subsp. pauca,was also carried out o to determine if the compound affected severity of the disease. Each year, from early April to October (excluding July and August), six spray treatments of 0.5% (v:v) Dentamet® were applied on the olive tree crowns. The compound reduced severity of symptoms in both cultivars. Most untreated trees died by the end of the trial, whereas all treated trees survived with good vegetative status as assessed by a normalized difference vegetation index. Quantitative real-time PCR was performed from June 2016 to September 2017, following the official procedures established by the European and Mediterranean Plant Protection Organization. The analysis revealed a statistically significant reduction of X. fastidiosa cell densities within the leaves of treated trees. These promising results suggest that integrated management to reduce severity of X. fastidiosa that includes regular pruning and soil harrowing with spring and summer spray treatments with Dentamet®, is likely to effectively control the disease.

    Quantification of Arsenic in Soil Samples Collected in an Industrial Area of Brindisi (Apulia, Italy): Speciation Analysis and Availability

    No full text
    Arsenic (As) is a well-known toxic metalloid, but environmental risks due to excessive As content in soils or sediments depend on the chemical forms present and their relative mobility. Long-term exposure to arsenic may cause several diseases. In order to assess the possible risks in the heavily impacted Consorzio per lo Sviluppo Industriale e di Servizi Reali alle Imprese (Consortium for Industrial Development and Effective Services for Business, S.I.S.R.I.) industrial area of Brindisi (Apulia, southern Italy), 38 soil samples were collected in the area, from 18 sampling points previously determined as outliers. Total As determination, speciation analysis, and a cession test with acetic acid were performed. Speciation analysis was performed by HPLC coupled to hydride generation-atomic absorption spectroscopy (HG-AAS). Total As determination obtained by mineralization showed a concentration range between 51.8 and 169.6 mg kg-1, which is higher than the limit of 50 mg kg-1 established by D.M. (Ministerial Decree) 471/99 for industrial areas. The highest concentrations of extracted As were obtained in the top-soil layers. As(III) and As(V) were detected in all the samples, while the concentrations of the organic species monomethyl arsonic acid (MMAA) and dimethyl arsenic acid (DMAA) were always under the detection limit. The samples releasing the highest As quantities in the acetic acid cession test were in every circumstance collected from the superficial soil levels. The different amounts of As determined in the sampling sites could depend on the distance from the specific sources of pollution, even if it is very difficult to identify them in a very complex industrial zone such as the S.I.S.R.I. area of Brindisi. In this study, As occurs mainly as relatively immobile or slowly exchangeable forms: for this reason, it is more abundant in the top-soil and is little affected by the action of rainwater, which transports only reduced quantities of As into the deeper layers

    Al servizio dell'ambiente

    No full text
    In Puglia il Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici ha supportato con uomini e mezzi diverse campagne di monitoraggio ambiental
    corecore