21 research outputs found

    Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma

    Get PDF
    Basal cell carcinoma (BCC) of the skin is the most common type of cancer, and accounts for up to 40% of all cancers in the United States with a growing incidence rate in the last decades in all developed countries. Surgery is curative for most patients, although it leaves unaesthetic scars, but those that develop locally advanced or metastatic BCC require different therapeutical approaches. Furthermore, patients with BCC present an high risk of developing additional tumors. The increasing economic burden and the morbidity of BCC render of primary interest the development of targeted treatments for this disease. Among the molecular signals involved in the development of BCC, it has become evident the critical role of the morphogenic Hedgehog (Hh) pathway. This pathway is found altered and activated in almost all the BCC, both sporadic or inherited. Given the centrality of the Hh pathway in the pathophysiology of BCC, the primary efforts to identify molecular targets for the topical or systemic treatment of this cancer have focused on the Hedgehog components. Several Hh inhibitors have been so far identified, from the first, the natural cyclopamine to the recently FDA-approved synthetic Vismodegib, most targeting the Hh receptor Smo (either its function or its translocation to the primary cilium). Other molecules await further characterization (Bisamides compounds), while drugs currently approved for other diseases such as Itraconazole (a antimicotic agent) and Vitamin D3 have been tested on BCC with encouraging results. The outcome of the numerous ongoing clinical trials is expected to expand the field in short time. Further research is needed to obtain drugs targeting downstream components of the Hh pathway (eg Gli) or to exploit combinatorial therapies (eg with PI3K inhibitors, or retinoids) in order to overcome potential drug resistance

    The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability

    Get PDF
    USP21 is a centrosome-associated deubiquitylase (DUB) that has been implicated in the formation of primary cilia - crucial organelles for the regulation of the Hedgehog (Hh) signaling pathway in vertebrates. Here, we identify KCTD6 - a cullin-3 E3-ligase substrate adapter that has been previously linked to Hh signaling - as well as Gli1, the key transcription factor responsible for Hh signal amplification, as new interacting partners of USP21. We identify a cryptic structured protein interaction domain in KCTD6, which is predicted to have a similar fold to Smr domains. Importantly, we show that both depletion and overexpression of catalytically active USP21 suppress Gli1-dependent transcription. Gli proteins are negatively regulated through protein kinase A (PKA)-dependent phosphorylation. We provide evidence that USP21 recruits and stabilises Gli1 at the centrosome where it promotes its phosphorylation by PKA. By revealing an intriguing functional pairing between a spatially restricted deubiquitylase and a kinase, our study highlights the centrosome as an important hub for signal coordination

    In vitro and in vivo inhibition of breast cancer cell growth by targeting the Hedgehog/GLI pathway with SMO (GDC-0449) or GLI (GANT-61) inhibitors.

    Get PDF
    Aberrant Hedgehog (Hh)/glioma-associated oncogene (GLI) signaling has been implicated in cancer progression. Here, we analyzed GLI1, Sonic Hedgehog (Shh) and NF-ÎşB expression in 51 breast cancer (ductal carcinoma) tissues using immunohistochemistry. We found a positive correlation between nuclear GLI1 expression and tumor grade in ductal carcinoma cases. Cytoplasmic Shh staining significantly correlated with a lower tumor grade. Next, the in vitro effects of two Hh signaling pathway inhibitors on breast cancer cell lines were evaluated using the Smoothened (SMO) antagonist GDC-0449 and the direct GLI1 inhibitor GANT-61. GDC-0449 and GANT-61 exhibited the following effects: a) inhibited breast cancer cell survival; b) induced apoptosis; c) inhibited Hh pathway activity by decreasing the mRNA expression levels of GLI1 and Ptch and inhibiting the nuclear translocation of GLI1; d) increased/decreased EGFR and ErbB2 protein expression, reduced p21- Ras and ERK1/ERK2 MAPK activities and inhibited AKT activation; and e) decreased the nuclear translocation of NF-ÎşB. However, GANT-61 exerted these effects more effectively than GDC-0449. The in vivo antitumor activities of GDC-0449 and GANT- 61 were analyzed in BALB/c mice that were subcutaneously inoculated with mouse breast cancer (TUBO) cells. GDC-0449 and GANT-61 suppressed tumor growth of TUBO cells in BALB/c mice to different extents. These findings suggest that targeting the Hh pathway using antagonists that act downstream of SMO is a more efficient strategy than using antagonists that act upstream of SMO for interrupting Hh signaling in breast cancer

    The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint

    Get PDF
    Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs) and its aberrant activation is a leading cause of Medulloblastoma, the most frequent pediatric brain tumor. We show here that the energy sensor AMPK inhibits Hh signaling by phosphorylating a single residue of human Gli1 that is not conserved in other species.Studies with selective agonists and genetic deletion have revealed that AMPK activation inhibits canonical Hh signaling in human, but not in mouse cells. Indeed we show that AMPK phosphorylates Gli1 at the unique residue Ser408, which is conserved only in primates but not in other species. Once phosphorylated, Gli1 is targeted for proteasomal degradation. Notably, we show that selective AMPK activation inhibits Gli1-driven proliferation and that this effect is linked to Ser408 phosphorylation, which represents a key metabolic checkpoint for Hh signaling.Collectively, this data unveil a novel mechanism of inhibition of Gli1 function, which is exclusive for human cells and may be exploited for the treatment of Medulloblastoma or other Gli1 driven tumors

    β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells

    Get PDF
    Background Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. Methods We evaluated β-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. Results Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. Conclusions Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal

    Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    Get PDF
    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4+ T cells. Memory CD4+ T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4+ T cell differentiation into CD44hi-CCR7lo-CD62Llo-CXCR3+-LFA1+ effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4+ T cells and dendritic cells and was mediated via direct exposure of CD4+ T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming

    Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors

    Get PDF
    Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo-dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1-mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog-dependent tumor cells in vitro and in vivo as well as the self-renewal ability and clonogenicity of tumor-derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling
    corecore