6 research outputs found

    Aneuploid IMR90 cells induced by depletion of pRB, DNMT1 and MAD2 show a common gene expression signature.

    Get PDF
    Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment

    The tumor suppressor p14ARF hampers proliferation of aneuploid cells induced by CENP-E partial depletion

    Get PDF
    The Spindle Assembly Checkpoint (SAC) is a cellular surveillance mechanism that ensures faithfully segregation of chromosomes. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, both hallmarks of tumor cells. Centromere Protein-E (CENP-E) is a crucial component of the SAC and facilitates kinetochore microtubule attachment required to achieve and maintain chromosome alignment. To investigate the possible role of p14ARF on aneuploid cells proliferation we induced aneuploidy in primary human fibroblasts (IMR90) and in near diploid tumor cells (HCT116) by partial depletion of CENP-E obtained by RNA interference. Our results show that in contrast to IMR90 aneuploid cell number that was drastically reduced tending toward wild type condition, HCT116 aneuploid cells were slightly decreased at late time points. This euploidy restoration was accompanied by increased p14ARF expression in IMR90 cells and followed ectopic p14ARF re-expression in p14ARF-null HCT116 cells. Collectively, our results strongly suggest that hampering proliferation of aneuploid cells is an additional role of the p14ARF tumor suppressor

    P14ARF: The Absence that Makes the Difference

    No full text
    P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector and then induced aneuploidy by treating HCT116 cells with the CENP-E inhibitor GSK923295. P14ARF ectopic re-expression restored the near-diploid phenotype of HCT116 cells, confirming that p14ARF counteracts aneuploid cell generation/proliferation
    corecore