7 research outputs found

    AA--Dependence of ΛΛ\Lambda\Lambda Bond Energies in Double---Λ\Lambda Hypernuclei

    Full text link
    The AA-dependence of the bond energy ΔBΛΛ\Delta B_{\Lambda\Lambda} of the ΛΛ{\Lambda\Lambda} hypernuclear ground states is calculated in a three-body Λ+Λ+AZ{\Lambda + \Lambda + {^{A}Z}} model and in the Skyrme-Hartree-Fock approach. Various ΛΛ{\Lambda\Lambda} and Λ\Lambda-nucleus or ΛN{\Lambda N} potentials are used and the sensitivity of ΔBΛΛ\Delta B_{\Lambda\Lambda} to the interactions is discussed. It is shown that in medium and heavy ΛΛ{\Lambda\Lambda} hypernuclei, ΔBΛΛ\Delta B_{\Lambda\Lambda} is a linear function of rΛ3r_{\Lambda}^{-3}, where rΛr_\Lambda is rms radius of the hyperon orbital. It looks unlikely that it will be possible to extract ΛΛ{\Lambda\Lambda} interaction from the double-Λ\Lambda hypernuclear energies only, the additional information about the Λ\Lambda-core interaction, in particular, on rΛr_{\Lambda} is needed.Comment: 11 pages, LaTex, 3 figure

    Optimization of laser stabilization via self-injection locking to a whispering-gallery-mode microresonator: experimental study

    Full text link
    Self-injection locking of a diode laser to a high-quality-factor microresonator is widely used for frequency stabilization and linewidth narrowing. We constructed several microresonator-based laser sources with measured instantaneous linewidths of 1 Hz and used them for investigation and implementation of the self-injection locking effect. We studied analytically and experimentally the dependence of the stabilization coefficient on tunable parameters such as locking phase and coupling rate. It was shown that precise control of the locking phase allows fine tuning of the generated frequency from the stabilized laser diode. We also showed that it is possible for such laser sources to realize fast continuous and linear frequency modulation by injection current tuning inside the self-injection locking regime. We conceptually demonstrate coherent frequency-modulated continuous wave LIDAR over a distance of 10 km using such a microresonator-stabilized laser diode in the frequency-chirping regime and measure velocities as low as sub-micrometer per second in the unmodulated case. These results could be of interest for cutting-edge technology applications such as space debris monitoring and long-range object classification, high resolution spectroscopy and others

    Generation of dual and quad-optical frequency combs in the injected radiation free mode-locked frequency-shifted feedback laser

    No full text
    Abstract The results of an optoelectronic system—frequency-shifted feedback (FSF) laser experimental examination are presented. The considered FSF laser is seeded only with optical amplifier spontaneous emission (ASE) and operates in the mode-locked regime, whereby the output radiation is sequence of short pulses with a repetition rate determined by the delay time in its optical feedback circuit. In the frequency domain, the spectrum of such a pulse sequence is an optical frequency comb (OFC). These OFCs we call initial. We consider the possibility of tunable acousto-optic (AO) dual and quad-comb frequency spacing downconversion in the FSF laser seeded with ASE and operating in the mode-locked regime. The examined system applies a single frequency shifting loop with single AO tunable filter as the frequency shifter that is fed with several radio frequency signals simultaneously. The initial OFCs with frequency spacing of about 6.5 MHz may be obtained in the wide spectral range and their width, envelope shape and position in the optical spectrum may be tuned. The dual-combs are obtained with a pair of initial OFCs aroused by two various ultrasound waves in the acousto-optic tunable filter (AOTF). The dual-combs frequency spacing is determined by the frequency difference of the signals applied to the AOTF piezoelectric transducer and can be tuned simply. The quad-combs are obtained with three initial OFCs, forming a pair of dual-combs, appearing when three ultrasound frequencies feed the AOTF transducer. The quad-combs frequency spacing is defined by the difference between the frequency spacing of dual-combs. Quad-combs with more than 5000 spectral lines and tunable frequency spacing are observed. The successive frequency downconversion gives the possibility to reduce the OFC frequency spacing form several MHz for initial OFC to tens of kHz for quad-combs. Graphical abstrac

    "Flora of Russia" on iNaturalist: a dataset

    No full text
    The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities
    corecore