8,054 research outputs found

    [Review of] St. Clair Drake. Black Folk Here and There , vol. I

    Get PDF
    St. Clair Drake, the recently deceased anthropologist, has written an elaborate summary essay on the black experience as it relates to the continent of Africa. In his latter years at Stanford University, Drake was head of the University\u27s Black Studies program. It appears obvious that Drake\u27s consciousness was raised during this particular time span. The research and writing of this book is far different from his seminal work with Clayton (Black Metropolis, 1945). In his emeritus years, Drake decided to seek the high ground of an historical anthropological-philosopher and address certain issues that W.E.B. DuBois considered paramount to the study of black people throughout the diaspora

    Water Quality Reporting Limits, Method Detection Limits, and Censored Values: What Does It All Mean?

    Get PDF
    The Arkansas Water Resources Center (AWRC) maintains a fee-based water-quality lab that is certified by the Arkansas Department of Environmental Quality (ADEQ). The AWRC Water Quality Lab analyzes water samples for a variety of constituents, using standard methods for the analysis of water samples (APHA 2012). The lab generates a report on the analysis, which is provided to clientele, and reports the concentrations or values as measured. Often times the concentrations or values might be very small, even zero as reported by the lab – what does this mean? How should we use this information? This document is intended to help our clientele understand the analytical report, the values, and how one might interpret information near the lower analytical limits. Every client wants the analysis of their water sample(s) to be accurate and precise, but what do we really mean when we say those two words? These words are often used synonymously or thought of as being the same, but the two words mean two different things. Both are equally important when analyzing water samples for constituent concentrations

    How to Collect your Water Sample and Interpret the Results for the Poultry Analytical Package

    Get PDF
    Rapidly growing birds may consume up to twice as much water as feed (Scantling and Watkins 2013), which means a plentiful supply of clean water is crucial for poultry health and productivity. To determine the quality of your poultry’s water resources, periodic sampling and analysis is needed. Analyzing water supplies can also be a crucial tool in identifying existing or potential challenges. The Arkansas Water Resources Center (AWRC) in cooperation with the UA Cooperative Extension Service offers several analytical packages to assess the quality of your water resources. This document is intended to provide guidance to poultry producers on collecting water samples for analysis and understanding the “Poultry Water Report Form” provided by the AWRC’s Water Quality Laboratory (Lab). The information contained within this fact sheet should be used as general guidance, and the reader is encouraged to seek advice from Extension specialists regarding the interpretation of individual reports and water testing results that may be of concern

    Localized transverse bursts in inclined layer convection

    Full text link
    We investigate a novel bursting state in inclined layer thermal convection in which convection rolls exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts increase in duration and number while exhibiting a characteristic wavenumber, magnitude, and size. We propose a mechanism which describes the duration of the observed bursting intervals and compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number 1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Fluorescent visualization of a spreading surfactant

    Full text link
    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally-resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently-tagged surfactant. We find that the leading edge of spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration which trails the leading edge, and a flat, monolayer-scale spreading film which differs from concentration profiles predicted by current models. Both the Marangoni ridge and surfactant leading edge can be described to spread as RtδR \propto t^{\delta}. We find spreading exponents, δH0.30\delta_H \approx 0.30 and δΓ0.22\delta_\Gamma \approx 0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4\delta = 1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge

    Instabilities in droplets spreading on gels

    Full text link
    We report a novel surface-tension driven instability observed for droplets spreading on a compliant substrate. When a droplet is released on the surface of an agar gel, it forms arms/cracks when the ratio of surface tension gradient to gel strength is sufficiently large. We explore a range of gel strengths and droplet surface tensions and find that the onset of the instability and the number of arms depend on the ratio of surface tension to gel strength. However, the arm length grows with an apparently universal law L ~ t^{3/4}
    corecore