2 research outputs found

    College campus smoking policies and programs and students' smoking behaviors

    Get PDF
    BACKGROUND: Although tobacco use in the United States has declined over the past 20 years, cigarette use among college students remains high. Additional research is thus needed to determine how university tobacco control policies and preventive education programs affect college students' smoking behaviors. METHODS: Approximately 13,000 undergraduate students at 12 universities or colleges in the state of Texas completed a web-based survey. College smoking policies were obtained from a survey of college administrators and from college websites. Logistic regression analyses were conducted to estimate the effects of individual smoking policies and programs on the odds of cigarette smoking. RESULTS: Of the individual programs, only having a preventive education program on campus was associated with lower odds of smoking. The existence of smoking cessation programs and designated smoking areas were associated with higher odds of smoking. Policies governing the sale and distribution of cigarettes were insignificantly associated with smoking. CONCLUSION: Rather than focusing on policies restricting cigarette sales and use, college administrators should consider implementing or expanding tobacco prevention and education programs to further reduce student smoking rates

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore