197 research outputs found

    Cryptic multicolored lizards in the Polychrus marmoratus Group (Squamata: Sauria: Polychrotidae) and the status of Leiolepis auduboni Hallowell

    Get PDF
    The Neotropical genus Polychrus contains seven species of arboreal lizards. The type species for the genus is the widespread Polychrus marmoratus. We compared a few populations of P. marmoratus using 16S and COI mitochondrial gene sequences (1,035 bp total) and found several lineages existing under the name Polychrus marmoratus. Working backwards, using morphology we identify Polychrus marmoratus from the Guiana Shield and resurrect the name Leiolepis auduboni Hallowell for the species present in Trinidad, Tobago, and northern Venezuela. The number of species in the genus Polychrus is raised to eight. However, we also discuss evidence for the existence of other cryptic species withi

    Comprehensive Peroxidase-Based Hematologic Profiling for The Prediction of 1-Year Myocardial Infarction and Death

    Get PDF
    Background— Recognition of biological patterns holds promise for improved identification of patients at risk for myocardial infarction (MI) and death. We hypothesized that identifying high- and low-risk patterns from a broad spectrum of hematologic phenotypic data related to leukocyte peroxidase-, erythrocyte- and platelet-related parameters may better predict future cardiovascular risk in stable cardiac patients than traditional risk factors alone. Methods and Results— Stable patients (n=7369) undergoing elective cardiac evaluation at a tertiary care center were enrolled. A model (PEROX) that predicts incident 1-year death and MI was derived from standard clinical data combined with information captured by a high-throughput peroxidase-based hematology analyzer during performance of a complete blood count with differential. The PEROX model was developed using a random sampling of subjects in a derivation cohort (n=5895) and then independently validated in a nonoverlapping validation cohort (n=1474). Twenty-three high-risk (observed in ≥10% of subjects with events) and 24 low-risk (observed in ≥10% of subjects without events) patterns were identified in the derivation cohort. Erythrocyte- and leukocyte (peroxidase)-derived parameters dominated the variables predicting risk of death, whereas variables in MI risk patterns included traditional cardiac risk factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with traditional risk factors alone (67%). Furthermore, the PEROX model reclassified 23.5% (P\u3c0.001) of patients to different risk categories for death/MI when added to traditional risk factors. Conclusion— Comprehensive pattern recognition of high- and low-risk clusters of clinical, biochemical, and hematologic parameters provided incremental prognostic value in stable patients having elective diagnostic cardiac catheterization for 1-year risks of death and MI

    Comprehensive Peroxidase-Based Hematologic Profiling for The Prediction of 1-Year Myocardial Infarction and Death

    Get PDF
    Background— Recognition of biological patterns holds promise for improved identification of patients at risk for myocardial infarction (MI) and death. We hypothesized that identifying high- and low-risk patterns from a broad spectrum of hematologic phenotypic data related to leukocyte peroxidase-, erythrocyte- and platelet-related parameters may better predict future cardiovascular risk in stable cardiac patients than traditional risk factors alone. Methods and Results— Stable patients (n=7369) undergoing elective cardiac evaluation at a tertiary care center were enrolled. A model (PEROX) that predicts incident 1-year death and MI was derived from standard clinical data combined with information captured by a high-throughput peroxidase-based hematology analyzer during performance of a complete blood count with differential. The PEROX model was developed using a random sampling of subjects in a derivation cohort (n=5895) and then independently validated in a nonoverlapping validation cohort (n=1474). Twenty-three high-risk (observed in ≥10% of subjects with events) and 24 low-risk (observed in ≥10% of subjects without events) patterns were identified in the derivation cohort. Erythrocyte- and leukocyte (peroxidase)-derived parameters dominated the variables predicting risk of death, whereas variables in MI risk patterns included traditional cardiac risk factors and elements from all blood cell lineages. Within the validation cohort, the PEROX model demonstrated superior prognostic accuracy (78%) for 1-year risk of death or MI compared with traditional risk factors alone (67%). Furthermore, the PEROX model reclassified 23.5% (P\u3c0.001) of patients to different risk categories for death/MI when added to traditional risk factors. Conclusion— Comprehensive pattern recognition of high- and low-risk clusters of clinical, biochemical, and hematologic parameters provided incremental prognostic value in stable patients having elective diagnostic cardiac catheterization for 1-year risks of death and MI

    Subclinical Myocardial Necrosis and Cardiovascular Risk in Stable Patients Undergoing Elective Cardiac Evaluation

    Get PDF
    Objective— The presence of subclinical myocardial necrosis as a prodrome to longer-term adverse cardiac event risk has been debated. The debate has focused predominantly within patients with acute coronary syndrome, and on issues of troponin assay variability and accuracy of detection, rather than on the clinical significance of the presence of subclinical myocardial necrosis (ie, “troponin leak”) within stable cardiac patients. Herein, we examine the relationship between different degrees of subclinical myocardial necrosis and long-term adverse clinical outcomes within a stable cardiac patient population with essentially normal renal function. Methods and Results— Sequential consenting patients (N=3828; median creatinine clearance, 100 mL/min/1.73m2) undergoing elective diagnostic coronary angiography with cardiac troponin I (cTnI) levels below the diagnostic cut-off for defining myocardial infarction (\u3c0.03 ng/mL) were evaluated. The relationship of subclinical myocardial necrosis with incident major adverse cardiovascular events (defined as any death, myocardial infarction, or stroke) over 3-year follow-up was examined. “Probable” (cTnI 0.001–0.008 ng/mL) and “definite” (cTnI 0.009–0.029 ng/mL) subclinical myocardial necrosis were observed frequently within the cohort (34% and 18%, respectively). A linear relationship was observed between the magnitude of subclinical myocardial necrosis and risk of 3-year incident major adverse cardiovascular events, particularly in those with cTnI 0.009 ng/mL or higher (hazard ratio, 3.00; 95% confidence interval, 2.4–3.8), even after adjustment for traditional risk factors, C-reactive protein, and creatinine clearance. The presence of subclinical myocardial necrosis was associated with elevations in acute phase proteins (C-reactive protein, ceruloplasmin; P\u3c0.01 each) and reduction in systemic antioxidant enzyme activities (arylesterase; P\u3c0.01) but showed no significant associations with multiple specific measures of oxidant stress, and showed borderline associations with myeloperoxidase, a marker of leukocyte activation. Conclusion— In stable cardiology patients, prodromal subclinical myocardial necrosis is associated with substantially higher long-term risk for major adverse cardiovascular events. The underlying mechanisms contributing to this minimal troponin leak phenomenon warrants further investigation

    Subclinical Myocardial Necrosis and Cardiovascular Risk in Stable Patients Undergoing Elective Cardiac Evaluation

    Get PDF
    Objective— The presence of subclinical myocardial necrosis as a prodrome to longer-term adverse cardiac event risk has been debated. The debate has focused predominantly within patients with acute coronary syndrome, and on issues of troponin assay variability and accuracy of detection, rather than on the clinical significance of the presence of subclinical myocardial necrosis (ie, “troponin leak”) within stable cardiac patients. Herein, we examine the relationship between different degrees of subclinical myocardial necrosis and long-term adverse clinical outcomes within a stable cardiac patient population with essentially normal renal function. Methods and Results— Sequential consenting patients (N=3828; median creatinine clearance, 100 mL/min/1.73m2) undergoing elective diagnostic coronary angiography with cardiac troponin I (cTnI) levels below the diagnostic cut-off for defining myocardial infarction (\u3c0.03 ng/mL) were evaluated. The relationship of subclinical myocardial necrosis with incident major adverse cardiovascular events (defined as any death, myocardial infarction, or stroke) over 3-year follow-up was examined. “Probable” (cTnI 0.001–0.008 ng/mL) and “definite” (cTnI 0.009–0.029 ng/mL) subclinical myocardial necrosis were observed frequently within the cohort (34% and 18%, respectively). A linear relationship was observed between the magnitude of subclinical myocardial necrosis and risk of 3-year incident major adverse cardiovascular events, particularly in those with cTnI 0.009 ng/mL or higher (hazard ratio, 3.00; 95% confidence interval, 2.4–3.8), even after adjustment for traditional risk factors, C-reactive protein, and creatinine clearance. The presence of subclinical myocardial necrosis was associated with elevations in acute phase proteins (C-reactive protein, ceruloplasmin; P\u3c0.01 each) and reduction in systemic antioxidant enzyme activities (arylesterase; P\u3c0.01) but showed no significant associations with multiple specific measures of oxidant stress, and showed borderline associations with myeloperoxidase, a marker of leukocyte activation. Conclusion— In stable cardiology patients, prodromal subclinical myocardial necrosis is associated with substantially higher long-term risk for major adverse cardiovascular events. The underlying mechanisms contributing to this minimal troponin leak phenomenon warrants further investigation

    Use of Sex-Specific Clinical and Exercise Risk Scores to Identify Patients at Increased Risk for All-Cause Mortality

    Get PDF
    Importance Risk assessment tools for exercise treadmill testing may have limited external validity. Cardiovascular mortality has decreased in recent decades, and women have been underrepresented in prior cohorts. Objectives To determine whether exercise and clinical variables are associated with differential mortality outcomes in men and women and to assess whether sex-specific risk scores better estimate all-cause mortality. Design, Setting, and Participants This retrospective cohort study included 59 877 patients seen at the Cleveland Clinic Foundation (CCF cohort) from January 1, 2000, through December 31, 2010, and 49 278 patients seen at the Henry Ford Hospital (FIT cohort) from January 1, 1991, through December 31, 2009. All patients were 18 years or older and underwent exercise treadmill testing. Data were analyzed from January 1, 2000, to October 27, 2011, in the CCF cohort and from January 1, 1991, to April 1, 2013, in the FIT cohort. Main Outcomes and Measurements The CCF cohort was divided randomly into derivation and validation samples, and separate risk scores were developed for men and women. Net reclassification, C statistics, and integrated discrimination improvement were used to compare the sex-specific risk scores with other tools that have all-cause mortality as the outcome. Discrimination and calibration were also evaluated with these sex-specific risk scores in the FIT cohort. Results The CCF cohort included 59 877 patients (59.4% men; 40.5% women) with a median (interquartile range [IQR]) age of 54 (45-63) years and 2521 deaths (4.2%) during a median follow-up of 7 (IQR, 4.1-9.6) years. The FIT cohort included 49 278 patients (52.5% men; 47.4% women) with a median (IQR) age of 54 (46-64) years and 6643 deaths (13.5%) during a median (IQR) follow-up of 10.2 (7-13.4) years. C statistics for the sex-specific risk scores in the CCF validation sample were higher (0.79 in women and 0.81 in men) than C statistics using other tools in women (0.70 for Duke Treadmill Score; 0.74 for Lauer nomogram) and men (0.72 for Duke Treadmill Score; 0.75 for Lauer nomogram). Net reclassification and integrated discrimination improvement were superior with the sex-specific risk scores, mostly owing to correct reclassification of events. The sex-specific risk scores in the FIT cohort demonstrated similar discrimination (C statistic, 0.78 for women and 0.79 for men), and calibration was reasonable. Conclusions and Relevance Sex-specific risk scores better estimate mortality in patients undergoing exercise treadmill testing. In particular, these sex-specific risk scores help to identify patients at the highest residual risk in the present era

    Inspiring and Aspiring Educators: An Intersection of Historic and Current Education Landscapes

    Get PDF
    The book Inspiring and Aspiring Educators: An Intersection of Historic and Current Education Landscapes is a collection of graduate student writings from the 2021 summer Education Doctorate Residency at Winona State University.https://openriver.winona.edu/educationeddbooks/1002/thumbnail.jp

    First Detector Guide to Invasive Insects

    Get PDF
    This is a guide to help first detectors identify invasive insects, including biology, identification, and monitoring

    Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    Get PDF
    [Image: see text] NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment
    • …
    corecore