7 research outputs found

    Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants with Treatment Resistance in Schizophrenia

    Get PDF
    Importance: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. Objective: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. Design, Setting, and Participants: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10501) and individuals with non-TRS (n = 20325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). Main Outcomes and Measures: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. Results: The study included a total of 85490 participants (48635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P =.001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P =.04). Conclusions and Relevance: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance

    Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism

    No full text
    The migration of vascular smooth muscle cells (SMCs) and fibroblasts into the intima after vascular injury is a central process in vascular lesion formation. The elevation of transmural interstitial flow is also observed after damage to the vascular endothelium. We have previously shown that interstitial flow upregulates matrix metalloproteinase-1 (MMP-1) expression, which in turn promotes SMC and fibroblast migration in collagen I gels. In this study, we investigated further the mechanism of flow-induced MMP-1 expression. An ERK1/2 inhibitor PD-98059 completely abolished interstitial flow-induced SMC migration and MMP-1 expression. Interstitial flow promoted ERK1/2 phosphorylation, whereas PD-98059 abolished flow-induced activation. Silencing ERK1/2 completely abolished MMP-1 expression and SMC migration. In addition, interstitial flow increased the expression of activator protein-1 transcription factors (c-Jun and c-Fos), whereas PD-98059 attenuated flow-induced expression. Knocking down c-jun completely abolished flow-induced MMP-1 expression, whereas silencing c-fos did not affect MMP-1 expression. Taken together, our data indicate that interstitial flow induces MMP-1 expression and SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism and suggest that interstitial flow, ERK1/2 MAPK, c-Jun, and MMP-1 may play important roles in SMC migration and neointima formation after vascular injury

    Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms

    Get PDF
    International audienc
    corecore