35 research outputs found

    Pharmacodynamic differentiation of lorazepam sleepiness and dizziness using an ordered categorical measure

    Full text link
    Categorical measures of lorazepam sleepiness and dizziness were modeled to identify differences in pharmacodynamic (PD) parameters between these adverse events (AEs). Differences in data-derived PD parameters were compared with relative incidence rates in the drug label (15.7% and 6.9%, respectively). Healthy volunteers ( n  = 20) received single oral doses of 2 mg lorazepam or placebo in a randomized, double-blind, cross-over fashion. A seven-point categorical scale measuring the intensity of AEs was serially administered over 24 h. The maximum score (MaxS), and area under the effect curve (AUEC) were determined by noncompartmental methods and compared using a paired t -test. Individual scores were modeled using a logistic function implemented in NONMEM. AUEC and MaxS for sleepiness were significantly higher than dizziness (20.35 vs. 9.76, p  < 0.01) and (2.35 vs. 1.45, p  < 0.01). Model slope estimates were similar for sleepiness and dizziness (0.21 logits × mL/ng vs. 0.19 logits × mL/ng), but baseline logits were significantly higher for sleepiness (−2.81 vs. −4.34 logits). Data-derived PD parameters were in concordance with label incidence rates. The higher intensity of sleepiness may be directly related to baseline (no drug present) while the increase in intensity as a result of drug was relatively similar for both AEs. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3628–3641, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77428/1/22093_ftp.pd

    Ibrutinib does not have clinically relevant interactions with oral contraceptives or substrates of CYP3A and CYP2B6

    Get PDF
    Ibrutinib may inhibitintestinal CYP3A4 and induce CYP2B6 and/or CYP3A. Secondary to potential induction, ibrutinib may reduce the exposure and effectiveness of oral contraceptives (OCs). This phase I study evaluated the effect of ibrutinib on the pharmacokinetics of the CYP2B6 substrate bupropion, CYP3A substrate midazolam, and OCs ethinylestradiol (EE) and levonorgestrel (LN). Female patients (N = 22) with B-cell malignancies received single doses of EE/LN (30/150 μg) and bupropion/midazolam (75/2 mg) during a pretreatment phase on days 1 and 3, respectively (before starting ibrutinib on day 8), and again after ibrutinib 560 mg/day for ≥ 2 weeks. Intestinal CYP3A inhibition was assessed on day 8 (single-dose ibrutinib plus single-dose midazolam). Systemic induction was assessed at steady-state on days 22 (EE/LN plus ibrutinib) and 24 (bupropion/midazolam plus ibrutinib). The geometric mean ratios (GMRs; test/reference) for maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) were derived using linear mixed-effects models (90% confidence interval within 80%-125% indicated no interaction). On day 8, the GMR for midazolam exposure with ibrutinib coadministration was ≤ 20% lower than the reference, indicating lack of intestinal CYP3A4 inhibition. At ibrutinib steady-state, the Cmax and AUC of EE were 33% higher than the reference, which was not considered clinically relevant. No substantial changes were noted for LN, midazolam, or bupropion. No unexpected safety findings were observed. A single dose of ibrutinib did not inhibit intestinal CYP3A4, and repeated administration did not induce CYP3A4/2B6, as assessed using EE, LN, midazolam, and bupropion

    Population Pharmacokinetics of Piperacillin Using Scavenged Samples From Preterm Infants

    Get PDF
    Piperacillin is often used in preterm infants for intra-abdominal infections; however, dosing has been derived from small single-center studies excluding extremely preterm infants at highest risk for these infections. We evaluated the population pharmacokinetics (PK) of piperacillin using targeted sparse sampling and scavenged samples obtained from preterm infants ≤32 weeks gestational age at birth and <120 postnatal days

    Population Pharmacokinetics of Metronidazole Evaluated Using Scavenged Samples from Preterm Infants

    Get PDF
    ABSTRACT Pharmacokinetic (PK) studies in preterm infants are rarely conducted due to the research challenges posed by this population. To overcome these challenges, minimal-risk methods such as scavenged sampling can be used to evaluate the PK of commonly used drugs in this population. We evaluated the population PK of metronidazole using targeted sparse sampling and scavenged samples from infants that were ≤32 weeks of gestational age at birth and 8 mg/liter was calculated. Monte Carlo simulations were performed to evaluate the adequacy of different dosing recommendations per gestational age group. Thirty-two preterm infants were enrolled: the median (range) gestational age at birth was 27 (22 to 32) weeks, postnatal age was 41 (0 to 97) days, postmenstrual age (PMA) was 32 (24 to 43) weeks, and weight was 1,495 (678 to 3,850) g. The final PK data set contained 116 samples; 104/116 (90%) were scavenged from discarded clinical specimens. Metronidazole population PK was best described by a 1-compartment model. The population mean clearance (CL; liter/h) was determined as 0.0397 × (weight/1.5) × (PMA/32) 2.49 using a volume of distribution ( V ) (liter) of 1.07 × (weight/1.5). The relative standard errors around parameter estimates ranged between 11% and 30%. On average, metronidazole concentrations in scavenged samples were 30% lower than those measured in scheduled blood draws. The majority of infants (>70%) met predefined pharmacodynamic efficacy targets. A new, simplified, postmenstrual-age-based dosing regimen is recommended for this population. Minimal-risk methods such as scavenged PK sampling provided meaningful information related to development of metronidazole PK models and dosing recommendations

    Teclistamab: Mechanism of action, clinical, and translational science

    No full text
    Abstract Multiple myeloma (MM) remains incurable despite improvements in treatment options. B‐cell maturation antigen (BCMA) is predominantly expressed in B‐lineage cells and represents a promising new target for MM. Teclistamab (TECVAYLITM) is the first T‐cell redirecting bispecific antibody approved for patients with MM. Targeting both CD3 receptor complex on T cells and BCMA on myeloma cells, teclistamab leads to T‐cell activation and subsequent lysis of BCMA+ cells. The recommended dose of teclistamab is 1.5 mg/kg subcutaneous weekly after two step‐up doses of 0.06 and 0.3 mg/kg, which was selected after review of safety, efficacy, pharmacokinetic, and pharmacodynamic data. Exposure‐response analyses of efficacy and safety data were also used to confirm the teclistamab dose. Teclistamab resulted in a high rate of deep and durable responses (63% overall response, 45.5% complete response or better, with 22 months median duration of response) in patients with triple‐exposed relapsed/refractory MM. Common adverse reactions included cytokine release syndrome, hematologic abnormalities, and infections. Teclistamab is currently being investigated as monotherapy as well as combination therapy across different MM indications

    Efficacy and Safety Exposure-Response Relationships of Apalutamide in Patients with Nonmetastatic Castration-Resistant Prostate Cancer.

    No full text
    To evaluate the relationship between exposure of apalutamide and its active metabolite, N-desmethyl-apalutamide, and selected clinical efficacy and safety parameters in men with high-risk nonmetastatic castration-resistant prostate cancer. An exploratory exposure-response analysis was undertaken using data from the 1,207 patients (806 apalutamide and 401 placebo) enrolled in the SPARTAN study, including those who had undergone dose reductions and dose interruptions. Univariate and multivariate Cox regression models evaluated the relationships between apalutamide and N-desmethyl-apalutamide exposure, expressed as area under the concentration-time curve at steady state, and metastasis-free survival (MFS). Univariate and multivariate logistic regression models assessed the relationship between apalutamide and N-desmethyl-apalutamide exposure and common treatment-emergent adverse events including fatigue, fall, skin rash, weight loss, and arthralgia. A total of 21% of patients in the apalutamide arm experienced dose reductions diminishing the average daily dose to 209 mg instead of 240 mg. Within the relatively narrow exposure range, no statistically significant relationship was found between MFS and apalutamide and N-desmethyl-apalutamide exposure. Within apalutamide-treated subjects, skin rash and weight loss had a statistically significant association with higher apalutamide exposure. The use of apalutamide at the recommended dose of 240 mg once daily provided a similar delay in metastases across the SPARTAN patient population, regardless of exposure. The exploratory exposure-safety analysis supports dose reductions in patients experiencing adverse events
    corecore