5 research outputs found

    Nonlinear Photoluminescence Spectrum of Single Gold Nanostructures

    No full text
    We investigate the multiphoton photoluminescence characteristics of gold nanoantennas fabricated from single crystals and polycrystalline films. By exciting these nanostructures with ultrashort pulses tunable in the near-infrared range, we observe distinct features in the broadband photoluminescence spectrum. By comparing antennas of different crystallinity and shape, we demonstrate that the nanoscopic geometry of plasmonic devices determines the shape of the emission spectra. Our findings rule out the contribution of the gold band structure in shaping the photoluminescence

    Incoherent Pathways of Charge Separation in Organic and Hybrid Solar Cells

    No full text
    In this work, we investigate the exciton dissociation dynamics occurring at the donor:acceptor interface in organic and hybrid blends employed in the realization of photovoltaic cells. Fundamental differences in the charge separation process are studied with the organic semiconductor polymer poly­(3-hexylthiophene) (P3HT) and either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or titanium dioxide (TiO<sub>2</sub>) acting as the acceptor. By using ultrafast broad-band transient absorption spectroscopy with few-fs temporal resolution, we observe that in both cases the incoherent formation of free charges dominates the charge generation process. From the optical response of the polymer and by tracking the excited-state absorption, we extract pivotal similarities in the incoherent energy pathways that follow the impulsive excitation. On time scales shorter than 200 fs, we observe that the two acceptors display similar dynamics in the exciton delocalization. Significant differences arise only on longer time scales with only an impact on the overall photocarrier generation efficiency

    Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas

    No full text
    Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging

    Activated Singlet Exciton Fission in a Semiconducting Polymer

    No full text
    Singlet exciton fission is a spin-allowed process to generate two triplet excitons from a single absorbed photon. This phenomenon offers great potential in organic photovoltaics, but the mechanism remains poorly understood. Most reports to date have addressed intermolecular fission within small-molecular crystals. However, through appropriate chemical design chromophores capable of intramolecular fission can also be produced. Here we directly observe sub-100 fs activated singlet fission in a semiconducting poly­(thienylenevinylene). We demonstrate that fission proceeds directly from the initial 1B<sub>u</sub> exciton, contrary to current models that involve the lower-lying 2A<sub>g</sub> exciton. In solution, the generated triplet pairs rapidly recombine and decay through the 2A<sub>g</sub> state. In films, exciton diffusion breaks this symmetry and we observe long-lived triplets which form charge-transfer states in photovoltaic blends

    Origin of optical nonlinearity in plasmonic semiconductor nanostructures

    No full text
    The development of nanoscale nonlinear elements in photonic integrated circuits is hindered by the physical limits to the nonlinear optical response of dielectrics, which requires that the interacting waves propagate in transparent volumes for distances much longer than their wavelength. Here we present experimental evidence that optical nonlinearities in doped semiconductors are due to free-electron and their efficiency could exceed by several orders of magnitude that of conventional dielectric nonlinearities. Our experimental findings are supported by comprehensive computational results based on the hydrodynamic modeling, which naturally includes nonlocal effects, of the free-electron dynamics in heavily doped semiconductors. By studying third-harmonic generation from plasmonic nanoantenna arrays made out of heavily n-doped InGaAs with increasing levels of free-carrier density, we discriminate between hydrodynamic and dielectric nonlinearities. As a result, the value of maximum nonlinear efficiency as well as its spectral location can now be controlled by tuning the doping level. Having employed the common material platform InGaAs/InP that supports integrated waveguides, our findings pave the way for future exploitation of plasmonic nonlinearities in all-semiconductor photonic integrated circuits
    corecore