20 research outputs found

    Secondary fibrosarcoma of the brain stem treated with cyclophosphamide and Imatinib

    Get PDF
    Radiation-induced midbrain fibrosarcoma is a rare, highly aggressive tumor, which is associated with poor prognosis. We present the case of a 48-year old man with brainstem fibrosarcoma 20 years following radiation therapy received for a pituitary tumor. We discuss this case in the context of the diagnostic criteria for these tumors, and previous reports of secondary and primary sarcomas of the central nervous system

    Marizomib activity as a single agent in malignant gliomas: ability to cross the blood-brain barrier.

    Get PDF
    BackgroundThe proteasome plays a vital role in the physiology of glioblastoma (GBM), and proteasome inhibition can be used as a strategy for treating GBM. Marizomib is a second-generation, irreversible proteasome inhibitor with a more lipophilic structure that suggests the potential for penetrating the blood-brain barrier. While bortezomib and carfilzomib, the 2 proteasome inhibitors approved for treatment of multiple myeloma, have little activity against malignant gliomas in vivo, marizomib could be a novel therapeutic strategy for primary brain tumors.MethodsThe in-vitro antitumor activity of marizomib was studied in glioma cell lines U-251 and D-54. The ability of marizomib to cross the blood-brain barrier and regulate proteasome activities was evaluated in cynomolgus monkeys and rats. The antitumor effect of marizomib in vivo was tested in an orthotopic xenograft model of human GBM.ResultsMarizomib inhibited the proteasome activity, proliferation, and invasion of glioma cells. Meanwhile, free radical production and apoptosis induced by marizomib could be blocked by antioxidant N-acetyl cysteine. In animal studies, marizomib distributed into the brain at 30% of blood levels in rats and significantly inhibited (>30%) baseline chymotrypsin-like proteasome activity in brain tissue of monkeys. Encouragingly, the immunocompromised mice, intracranially implanted with glioma xenografts, survived significantly longer than the control animals (P < .05) when treated with marizomib.ConclusionsThese preclinical studies demonstrated that marizomib can cross the blood-brain barrier and inhibit proteasome activity in rodent and nonhuman primate brain and elicit a significant antitumor effect in a rodent intracranial model of malignant glioma
    corecore