35 research outputs found

    Characterization of the Nrt2.6 gene in arabidopsis thaliana: a link with plant response to biotic and abiotic stress

    Get PDF
    The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.Julie Dechorgnat, Oriane Patrit, Anne Krapp, Mathilde Fagard and Françoise Daniel-Vedel

    Quantitative Trait Loci Analysis of Nitrogen Use Efficiency in Arabidopsis

    No full text
    Improving plant nitrogen (N) use efficiency or controlling soil N requires a better knowledge of the regulation of plant N metabolism. This could be achieved using Arabidopsis as a model genetic system, taking advantage of the natural variation available among ecotypes. Here, we describe an extensive study of N metabolism variation in the Bay-0 × Shahdara recombinant inbred line population, using quantitative trait locus (QTL) mapping. We mapped QTL for traits such as shoot growth, total N, nitrate, and free-amino acid contents, measured in two contrasting N environments (contrasting nitrate availability in the soil), in controlled conditions. Genetic variation and transgression were observed for all traits, and most of the genetic variation was identified through QTL and QTL × QTL epistatic interactions. The 48 significant QTL represent at least 18 loci that are polymorphic between parents; some may correspond to known genes from the N metabolic pathway, but others represent new genes controlling or interacting with N physiology. The correlations between traits are dissected through QTL colocalizations: The identification of the individual factors contributing to the regulation of different traits sheds new light on the relations among these characters. We also point out that the regulation of our traits is mostly specific to the N environment (N availability). Finally, we describe four interesting loci at which positional cloning is feasible

    Major Alterations of the Regulation of Root NO(3)(−) Uptake Are Associated with the Mutation of Nrt2.1 and Nrt2.2 Genes in Arabidopsis

    No full text
    The role of AtNrt2.1 and AtNrt2.2 genes, encoding putative NO(3)(−) transporters in Arabidopsis, in the regulation of high-affinity NO(3)(−) uptake has been investigated in the atnrt2 mutant, where these two genes are deleted. Our initial analysis of the atnrt2 mutant (S. Filleur, M.F. Dorbe, M. Cerezo, M. Orsel, F. Granier, A. Gojon, F. Daniel-Vedele [2001] FEBS Lett 489: 220–224) demonstrated that root NO(3)(−) uptake is affected in this mutant due to the alteration of the high-affinity transport system (HATS), but not of the low-affinity transport system. In the present work, we show that the residual HATS activity in atnrt2 plants is not inducible by NO(3)(−), indicating that the mutant is more specifically impaired in the inducible component of the HATS. Thus, high-affinity NO(3)(−) uptake in this genotype is likely to be due to the constitutive HATS. Root (15)NO(3)(−) influx in the atnrt2 mutant is no more derepressed by nitrogen starvation or decrease in the external NO(3)(−) availability. Moreover, the mutant also lacks the usual compensatory up-regulation of NO(3)(−) uptake in NO(3)(−)-fed roots, in response to nitrogen deprivation of another portion of the root system. Finally, exogenous supply of NH(4)(+) in the nutrient solution fails to inhibit (15)NO(3)(−) influx in the mutant, whereas it strongly decreases that in the wild type. This is not explained by a reduced activity of NH(4)(+) uptake systems in the mutant. These results collectively indicate that AtNrt2.1 and/or AtNrt2.2 genes play a key role in the regulation of the high-affinity NO(3)(−) uptake, and in the adaptative responses of the plant to both spatial and temporal changes in nitrogen availability in the environment

    Two anion transporters AtClCa and AtClCe fulfil interconnecting but not redundant roles in nitrate assimilation pathways.

    No full text
    International audienceIn plants, the knowledge of the molecular identity and functions of anion channels are still very limited, and are almost restricted to the large ChLoride Channel (CLC) family. In Arabidopsis thaliana, some genetic evidence has suggested a role for certain AtCLC protein members in the control of plant nitrate levels. In this context, AtClCa has been demonstrated to be involved in nitrate transport into the vacuole, thereby participating in cell nitrate homeostasis. * In this study, analyses of T-DNA insertion mutants within the AtClCa and AtClCe genes revealed common phenotypic traits: a lower endogenous nitrate content; a higher nitrite content; a reduced nitrate influx into the root; and a decreased expression of several genes encoding nitrate transporters. * This set of nitrate-related phenotypes, displayed by clca and clce mutant plants, showed interconnecting roles of AtClCa and AtClCe in nitrate homeostasis involving two different endocellular membranes. * In addition, it revealed cross-talk between two nitrate transporter families participating in nitrate assimilation pathways. The contribution to nitrate homeostasis at the cellular level of members of these different families is discussed
    corecore