518 research outputs found

    Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance.

    Get PDF
    Phthalate diesters have been shown to be developmental and reproductive toxicants in animal studies. A recent epidemiologic study showed certain phthalates to be significantly associated with reduced anogenital distance in human male infants, the first evidence of subtle developmental effects in human male infants exposed prenatally to phthalates. We used two previously published methods to estimate the daily phthalate exposures for the four phthalates whose urinary metabolites were statistically significantly associated with developmental effects in the 214 mother-infant pairs [di-n-butyl phthalate (DnBP) , diethyl phthalate (DEP) , butylbenzyl phthalate (BBzP) , diisobutyl phthalate (DiBP) ] and for another important phthalate [di-2-ethylhexyl phthalate (DEHP) ]. We estimated the median and 95th percentile of daily exposures to DBP to be 0.99 and 2.68 microg/kg/day, respectively ; for DEP, 6.64 and 112.3 microg/kg/day ; for BBzP, 0.50 and 2.47 microg/kg/day ; and for DEHP, 1.32 and 9.32 microg/kg/day. The U.S. Environmental Protection Agency (EPA) reference doses for these chemicals are 100 (DBP) , 800 (DEP) , 200 (BBzP) , and 20 (DEHP) microg/kg/day. The median and 95th percentile exposure estimates for the phthalates associated with reduced anogenital distance in the study population are substantially lower than current U.S. EPA reference doses for these chemicals and could be informative to any updates of the hazard assessments and risk assessments for these chemicals

    Restoration of axon conduction and motor deficits by therapeutic treatment with glatiramer acetate.

    Get PDF
    Glatiramer acetate (GA; Copaxone) is an approved drug for the treatment of multiple sclerosis (MS). The underlying multifactorial anti-inflammatory, neuroprotective effect of GA is in the induction of reactive T cells that release immunomodulatory cytokines and neurotrophic factors at the injury site. These GA-induced cytokines and growth factors may have a direct effect on axon function. Building on previous findings that suggest a neuroprotective effect of GA, we assessed the therapeutic effects of GA on brain and spinal cord pathology and functional correlates using the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Therapeutic regimens were utilized based on promising prophylactic efficacy. More specifically, C57BL/6 mice were treated with 2 mg/mouse/day GA for 8 days beginning at various time points after EAE post-induction day 15, yielding a thorough, clinically relevant assessment of GA efficacy within the context of severe progressive disease. Therapeutic treatment with GA significantly decreased clinical scores and improved rotorod motor performance in EAE mice. These functional improvements were supported by an increase in myelinated axons and fewer amyloid precursor protein-positive axons in the spinal cords of GA-treated EAE mice. Furthermore, therapeutic GA decreased microglia/macrophage and T cell infiltrates and increased oligodendrocyte numbers in both the spinal cord and corpus callosum of EAE mice. Finally, GA improved callosal axon conduction and nodal protein organization in EAE. Our results demonstrate that therapeutic GA treatment has significant beneficial effects in a chronic mouse model of MS, in which its positive effects on both myelinated and non-myelinated axons results in improved axon function

    Correlation of Sferics Characteristics and Electric Field in Thunderstorm Discharge

    Get PDF
    Electrical Engineerin

    Cloning of a novel inhibin alpha cDNA from rhesus monkey testis

    Get PDF
    BACKGROUND: Inhibins are dimeric gonadal protein hormones that negatively regulate pituitary FSH synthesis and secretion. Inhibin B is produced by testicular Sertoli cells and is the primary circulating form of inhibin in most adult male mammals. Inhibin B is comprised of the inhibin alpha subunit disulfide-linked to the inhibin/activin betaB subunit. Here we describe the cloning of the cDNAs encoding these subunits from adult rhesus monkey testis RNA. METHODS: The subunit cDNAs were cloned by a combination of reverse transcriptase polymerase chain reaction (RT-PCR) and 5' rapid amplification of cDNA ends (RACE) RT-PCR from adult rhesus monkey testis RNA. RESULTS: Both the inhibin alpha and betaB subunit nucleotide and predicted protein sequences are highly conserved with other mammalian species, particularly with humans. During the course of these investigations, a novel inhibin alpha mRNA isoform was also identified. This form, referred to as rhesus monkey inhibin alpha-variant 2, appears to derive from both alternative transcription initiation as well as alternative splicing. rmInhibin alpha-variant 2 is comprised of a novel 5' exon (exon 0), which is spliced in-frame with exon 2 of the conventional inhibin alpha isoforms (variant 1). Exon 1 is skipped in its entirety such that the pro-alpha and part of the alpha N regions are not included in the predicted protein. rmInhibin alpha -variant 2 is of relatively low abundance and its biological function has not yet been ascertained. CONCLUSION: The data show that the predicted inhibin B protein is very similar between monkeys and humans. Therefore, studies in monkeys using recombinant human inhibins are likely to reflect actions of the homologous ligands. In addition, we have observed the first inhibin alpha subunit mRNA variant. It is possible that variants will be observed in other species as well and this may lead to novel insights into inhibin action

    Salt wedge dynamics lead to enhanced sediment trapping within side embayments in high-energy estuaries

    Get PDF
    Author Posting. Β© American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2226–2242, doi:10.1002/2016JC012595.Off-river coves and embayments provide accommodation space for sediment accumulation, particularly for sandy estuaries where high energy in the main channel prevents significant long-term storage of fine-grained material. Seasonal sediment inputs to Hamburg Cove in the Connecticut River estuary (USA) were monitored to understand the timing and mechanisms for sediment storage there. Unlike in freshwater tidal coves, sediment was primarily trapped here during periods of low discharge, when the salinity intrusion extended upriver to the cove entrance. During periods of low discharge and high sediment accumulation, deposited sediment displayed geochemical signatures consistent with a marine source. Numerical simulations reveal that low discharge conditions provide several important characteristics that maximize sediment trapping. First, these conditions allow the estuarine turbidity maximum (ETM) to be located in the vicinity of the cove entrance, which increases sediment concentrations during flood tide. Second, the saltier water in the main channel can enter the cove as a density current, enhancing near-bed velocities and resuspending sediment, providing an efficient delivery mechanism. Finally, higher salinity water accumulates in the deep basin of the cove, creating a stratified region that becomes decoupled from ebb currents, promoting retention of sediment in the cove. This process of estuarine-enhanced sediment accumulation in off-river coves will likely extend upriver during future sea level rise.NSF Grant Numbers: EAR-1148244 , OCE-09264272017-09-1
    • …
    corecore