3,527 research outputs found
Combined Diffusion-Relaxometry MRI to Identify Dysfunction in the Human Placenta
Purpose: A combined diffusion-relaxometry MR acquisition and analysis
pipeline for in-vivo human placenta, which allows for exploration of coupling
between T2* and apparent diffusion coefficient (ADC) measurements in a sub 10
minute scan time.
Methods: We present a novel acquisition combining a diffusion prepared
spin-echo with subsequent gradient echoes. The placentas of 17 pregnant women
were scanned in-vivo, including both healthy controls and participants with
various pregnancy complications. We estimate the joint T2*-ADC spectra using an
inverse Laplace transform.
Results: T2*-ADC spectra demonstrate clear quantitative separation between
normal and dysfunctional placentas.
Conclusions: Combined T2*-diffusivity MRI is promising for assessing fetal
and maternal health during pregnancy. The T2*-ADC spectrum potentially provides
additional information on tissue microstructure, compared to measuring these
two contrasts separately. The presented method is immediately applicable to the
study of other organs
Evidence for a Black Hole and Accretion Disk in the LINER NGC 4203
We present spectroscopic observations from the Hubble Space Telescope that
reveal for the first time the presence of a broad pedestal of Balmer-line
emission in the LINER galaxy NGC 4203. The emission-line profile is suggestive
of a relativistic accretion disk, and is reminiscent of double-peaked transient
Balmer emission observed in a handful of other LINERs. The very broad line
emission thus constitutes clear qualitative evidence for a black hole, and
spatially resolved narrow-line emission in NGC 4203 can be used to constrain
its mass, with M_BH less than 6 x 10^6 solar masses at 99.7% confidence. This
value implies a ratio of black-hole mass to bulge mass of less than
approximately 7 x 10^-4 in NGC 4203, which is less by a factor of ~3 - 9 than
the mean ratio obtained for other galaxies. The availability of an independent
constraint on central black-hole mass makes NGC4203 an important testbed for
probing the physics of weak active galactic nuclei. Assuming M_BH near the
detection limit, the ratio of observed luminosity to the Eddington luminosity
is approximately 10^-4. This value is consistent with advection-dominated
accretion, and hence with scenarios in which an ion torus irradiates an outer
accretion disk that produces the observed double-peaked line emission.
Follow-up observations will make it possible to improve the black-hole mass
estimate and study variability in the nuclear emission.Comment: 10 pages (LaTeX, AASTeX v4.0), 2 postscript figures, accepted for
publication in The Astrophysical Journal Letter
Telomerase prevents accelerated senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts
Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD)-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction
SuperMassive Black Holes in Bulges
We present spatially extended gas kinematics at parsec-scale resolution for
the nuclear regions of four nearby disk galaxies, and model them as rotation of
a gas disk in the joint potential of the stellar bulge and a putative central
black hole. The targets were selected from a larger set of long-slit spectra
obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei
with STIS (SUNNS). They represents the 4 galaxies (of 24) that display
symmetric gas velocity curves consistent with a rotating disk. We derive the
stellar mass distribution from the STIS acquisition images adopting the stellar
mass-to-light ratio normalized so as to match ground-based velocity dispersion
measurements over a large aperture. Subsequently, we constrain the mass of a
putative black hole by matching the gas rotation curve, following two distinct
approaches. In the most general case we explore all the possible disk
orientations, alternatively we constrain the gas disk orientation from the
dust-lane morphology at similar radii. In the latter case the kinematic data
indicate the presence of a central black hole for three of the four objects,
with masses of 10^7 - 10^8 solar masses, representing up to 0.025 % of the host
bulge mass. For one object (NGC2787) the kinematic data alone provide clear
evidence for the presence of a central black hole even without external
constraints on the disk orientation. These results illustrate directly the need
to determine black-hole masses by differing methods for a large number of
objects, demonstrate that the variance in black hole/bulge mass is much larger
than previously claimed, and reinforce the recent finding that the black-hole
mass is tightly correlated with the bulge stellar velocity dispersion.Comment: 26 pages, 11 Postscript figures, accepted for publication on Ap
Potential for allocative harm in an environmental justice data tool
Neighborhood-level screening algorithms are increasingly being deployed to
inform policy decisions. We evaluate one such algorithm, CalEnviroScreen -
designed to promote environmental justice and used to guide hundreds of
millions of dollars in public funding annually - assessing its potential for
allocative harm. We observe the model to be sensitive to subjective model
decisions, with 16% of tracts potentially changing designation, as well as
financially consequential, estimating the effect of its positive designations
as a 104% (62-145%) increase in funding, equivalent to \$2.08 billion
(\$1.56-2.41 billion) over four years. We also observe allocative tradeoffs and
susceptibility to manipulation, raising ethical concerns. We recommend
incorporating sensitivity analyses to mitigate allocative harm and
accountability mechanisms to prevent misuse
Double-Peaked Broad Emission Lines in NGC 4450 and Other LINERs
Spectra taken with HST reveal that NGC 4450 emits Balmer emission lines with
displaced double peaks and extremely high-velocity wings. This characteristic
line profile, previously seen in a few nearby LINERs and in a small fraction of
broad-line radio galaxies, can be interpreted as a kinematic signature of a
relativistic accretion disk. We can reproduce the observed profile with a model
for a disk with a radial range of 1000-2000 gravitational radii and inclined by
27 degrees along the line of sight. The small-aperture HST data also allow us
to detect, for the first time, the featureless continuum at optical wavelengths
in NGC 4450; the nonstellar nucleus is intrinsically very faint, with M_B =
-11.2 mag for D = 16.8 Mpc. We have examined the multiwavelength properties of
NGC 4450 collectively with those of other low-luminosity active nuclei which
possess double-peaked broad lines and find a number of common features. These
objects are all classified spectroscopically as "type 1" LINERs or closely
related objects. The nuclear luminosities are low, both in absolute terms and
relative to the Eddington rates. All of them have compact radio cores, whose
strength relative to the optical nuclear emission places them in the league of
radio-loud active nuclei. The broad-band spectral energy distributions of these
sources are most notable for their deficit of ultraviolet emission compared to
those observed in luminous Seyfert 1 nuclei and quasars. The double-peaked
broad-line radio galaxies Arp 102B and Pictor A have very similar attributes.
We discuss how these characteristics can be understood in the context of
advection-dominated accretion onto massive black holes.Comment: To appear in The Astrophysical Journal. Latex, 15 pages, embedded
figures and tabl
The Survey of Nearby Nuclei with the Space Telescope Imaging Spectrograph: Emission-Line Nuclei at Hubble Space Telescope Resolution
We present results from a program of optical spectroscopy for 23 nearby galaxies with emission-line nuclei. This investigation takes advantage of the spatial resolution of the Hubble Space Telescope to study the structure and energetics of the central ~10-20 pc, and the resulting data have value for quantifying central black hole masses, star formation histories, and nebular properties. This paper provides a description of the experimental design, and new findings from the study of emission lines. The sample targets span a range of nebular spectroscopic class, from H II to Seyfert nuclei. This data set and the resulting measurements are unique in terms of the sample size, the range of nebular class, and the investigation of physical scales extending down to parsecs. The line ratios indicative of nebular ionization show only modest variations over order-of-magnitude differences in radius, and demonstrate in a systematic way that geometrical dilution of the radiation field from a central source cannot be assumed as a primary driver of ionization structure. Comparisons between large- and small-aperture measurements for the H II/LINER transition objects provide a new test that challenges conventional wisdom concerning the composite nature of these systems. We also list a number of other quantitative results that are of interest for understanding galaxy nuclei, including (1) the spatial distribution/degree of concentration of Hα emission as a function of nebular type; (2) the radial variation in electron density as a function of nebular type; and (3) quantitative broad Hα estimates obtained at a second epoch for these low-luminosity nuclei. The resulting measurements provide a new basis for comparing the nuclei of other galaxies with that of the Milky Way. We find that the Galactic center is representative across a wide span of properties as a low-luminosity emission-line nucleus
Quantization of Superflow Circulation and Magnetic Flux with a Tunable Offset
Quantization of superflow-circulation and of magnetic-flux are considered for
systems, such as superfluid He-A and unconventional superconductors, having
nonscalar order parameters. The circulation is shown to be the anholonomy in
the parallel transport of the order parameter. For multiply-connected samples
free of distributed vorticity, circulation and flux are predicted to be
quantized, but generically to nonintegral values that are tunably offset from
integers. This amounts to a version of Aharonov-Bohm physics. Experimental
settings for testing these issues are discussed.Comment: 5 two-column pages, ReVTeX, figure available upon request (to
[email protected]
- âŠ