12 research outputs found

    Synapse-level wiring rule inferred with SBI differs from Peters’ rule.

    No full text
    We compared an SBI-inferred parametrized wiring rule predicting synapse counts on the subcellular level with a corresponding formulation of Peters’ rule. (A) SBI posterior for the wiring rule parameter θ (probability of forming a synapse if two neurons are close), compared to Peters’ rule assuming θ = 1 (gray). (B) Number of synapses predicted by the inferred posterior (blue) and Peters’ rule (gray) compared to the number of presynaptic boutons realistically available in the structural model (dashed black), plotted over the entire cortical depth of the barrel cortex column. (C) Connection probabilities simulated from the inferred synapse level posterior (blue) and Peters’ rule (gray) compared to the measured connection probabilities (black).</p

    Prior predictive distribution for the DSO rule.

    No full text
    Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.</div

    Conditional posterior distributions.

    No full text
    Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.</div

    SBI results for the two-parameter DSO rule.

    No full text
    Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.</div

    Formulating wiring rules in the rat barrel cortex as simulation-based models.

    No full text
    (A) The structural model of the rat barrel cortex contains digital reconstructions of position, morphology, and subcellular features of several neuron types in the barrel cortex and the ventral posterior medial nucleus (VPM) of the thalamus. (B) We formulate a wiring rule that predicts the probability of a synapse between two neurons from their dense structural overlap (DSO), i.e., the product of the number of pre- and postsynaptic structural features, normalized by all postsynaptic features in a given subvolume (postAll). (C) By applying the wiring rule to every neuron-pair subvolume combination of the model to connection probabilities and then sampling corresponding synapse counts from a Poisson distribution (left), we can simulate a barrel cortex connectome. To compare the simulated data to measurements, we calculate population connection probabilities between VPM and barrel cortex cell types as they have been measured experimentally (right). (D) To obtain a simulation-based model, we introduce parameters to the rule and define a prior distribution (left) such that each parameter combination corresponds to a different rule configuration and leads to different simulated connection probabilities (right, grey; measured data in black, [34, 35]).</p

    Prior and posterior predictive distributions.

    No full text
    Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.</div

    Prior predictive checks.

    No full text
    Recent advances in connectomics research enable the acquisition of increasing amounts of data about the connectivity patterns of neurons. How can we use this wealth of data to efficiently derive and test hypotheses about the principles underlying these patterns? A common approach is to simulate neuronal networks using a hypothesized wiring rule in a generative model and to compare the resulting synthetic data with empirical data. However, most wiring rules have at least some free parameters, and identifying parameters that reproduce empirical data can be challenging as it often requires manual parameter tuning. Here, we propose to use simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a fixed wiring rule to fit the empirical data, SBI considers many parametrizations of a rule and performs Bayesian inference to identify the parameters that are compatible with the data. It uses simulated data from multiple candidate wiring rule parameters and relies on machine learning methods to estimate a probability distribution (the ‘posterior distribution over parameters conditioned on the data’) that characterizes all data-compatible parameters. We demonstrate how to apply SBI in computational connectomics by inferring the parameters of wiring rules in an in silico model of the rat barrel cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule parameters that reproduce the measurements. We show how access to the posterior distribution over all data-compatible parameters allows us to analyze their relationship, revealing biologically plausible parameter interactions and enabling experimentally testable predictions. We further show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used in connectomics, providing a quantitative and efficient way to constrain model parameters with empirical connectivity data.</div

    Enhancing generative modeling in connectomics with simulation-based inference.

    No full text
    (A) Generative modeling is a common approach for testing hypotheses about the connectome: One implements a hypothesized wiring rule as a computational model that simulates connectivity data x (left) and then tests and manually refines the rule by comparing simulated with measured data xo (right). (B) Our goal is to make this approach more efficient using simulation-based Bayesian inference (SBI): By equipping the generative model with parameters θ, we define a space of multiple a-priori hypotheses (left) from which we can generate multiple simulated data x (middle). We then use the simulated data to perform density estimation with artificial neural networks to estimate the posterior distribution over model parameters conditioned on the measured data, i.e., p(θ|xo). The inferred posterior distribution characterizes all wiring rule parameters compatible with the measured data, replacing the manual refinement of single wiring rules in the conventional approach (bottom).</p

    SBI posterior reveals parameter interactions and predicts unseen data.

    No full text
    (A) The posterior over the three wiring rule parameters scaling the DSO features (inset) inferred with SBI (blue) and the initial prior distribution over parameters (gray). The corner plot shows the one-dimensional marginal distribution of each parameter on the diagonal and the pairwise two-dimensional marginals on the off-diagonal (contour lines show the 34%, 68%, and 95% credible regions). (B) Comparison of measured connection probabilities (black, [34, 35]) with those simulated with parameter values sampled from the inferred posterior (blue), from the prior (gray) and the unparametrized a-priori DSO rule (orange). (C) Each panel shows the predictions for one held-out measurement generated from a posterior that was trained and conditioned only on the other six measurements, i.e., each panel refers to a different posterior.</p
    corecore