7 research outputs found

    The role of unintegrated DNA in HIV infection

    Get PDF
    Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy

    State of the art: Proceedings of the American Association for Thoracic Surgery Enhanced Recovery After Cardiac Surgery SummitCentral MessagePerspective

    No full text
    Despite the benefits established for multiple surgical specialties, enhanced recovery after surgery has been underused in cardiac surgery. A cardiac enhanced recovery after surgery summit was convened at the 102nd American Association for Thoracic Surgery annual meeting in May 2022 for experts to convey key enhanced recovery after surgery concepts, best practices, and applicable results for cardiac surgery. Topics included implementation of enhanced recovery after surgery, prehabilitation and nutrition, rigid sternal fixation, goal-directed therapy, and multimodal pain management

    YidC assists the stepwise and stochastic folding of membrane proteins

    No full text
    How chaperones, insertases and translocases facilitate insertion and folding of complex cytoplasmic proteins into cellular membranes is not fully understood. Here, we utilize single-molecule force spectroscopy to observe YidC, a transmembrane chaperone/insertase, sculpting the folding trajectory of the polytopic α-helical membrane protein lactose permease (LacY). In the absence of YidC, unfolded LacY inserts individual structural segments into the membrane; however, misfolding dominates the process so that folding cannot be completed. YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, thereby indicating that LacY can fold along variable pathways towards the native structure. Since YidC is essential in membrane protein biogenesis and LacY a paradigm for the major facilitator superfamily, our observations have general relevance

    Barriers to natural regeneration in temperate forests across the USA

    No full text

    Drug rechallenge and treatment beyond progression—implications for drug resistance

    No full text
    corecore