36 research outputs found
Fast, Accurate State Measurement in Superconducting Qubits
Superconducting qubits have emerged as leading candidates as the foundation of quantum information processing systems. Progress in superconducting qubit experiments with greater numbers of qubits and advanced techniques such as feedback will require faster and more accurate quantum state measurement. In particular, cyclic fault tolerance protocols such as the surface code require high accuracy measurement on time scales significantly shorter than the coherence times of the qubits. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, finding that we can measured a single qubit state to 99.8% accuracy in 140 ns. This accuracy and speed is suitable for advanced multiqubit experiments including surface-code error correction
Compressed sensing quantum process tomography for superconducting quantum gates
We apply the method of compressed sensing (CS) quantum process tomography
(QPT) to characterize quantum gates based on superconducting Xmon and phase
qubits. Using experimental data for a two-qubit controlled-Z gate, we obtain an
estimate for the process matrix with reasonably high fidelity compared
to full QPT, but using a significantly reduced set of initial states and
measurement configurations. We show that the CS method still works when the
amount of used data is so small that the standard QPT would have an
underdetermined system of equations. We also apply the CS method to the
analysis of the three-qubit Toffoli gate with numerically added noise, and
similarly show that the method works well for a substantially reduced set of
data. For the CS calculations we use two different bases in which the process
matrix is approximately sparse, and show that the resulting estimates of
the process matrices match each ther with reasonably high fidelity. For both
two-qubit and three-qubit gates, we characterize the quantum process by not
only its process matrix and fidelity, but also by the corresponding standard
deviation, defined via variation of the state fidelity for different initial
states.Comment: 16 pages, 11 figure
Reduced phase error through optimized control of a superconducting qubit
Minimizing phase and other errors in experimental quantum gates allows higher
fidelity quantum processing. To quantify and correct for phase errors in
particular, we have developed a new experimental metrology --- amplified phase
error (APE) pulses --- that amplifies and helps identify phase errors in
general multi-level qubit architectures. In order to correct for both phase and
amplitude errors specific to virtual transitions and leakage outside of the
qubit manifold, we implement "half derivative" an experimental simplification
of derivative reduction by adiabatic gate (DRAG) control theory. The phase
errors are lowered by about a factor of five using this method to per gate, and can be tuned to zero. Leakage outside the qubit
manifold, to the qubit state, is also reduced to for
faster gates.Comment: 4 pages, 4 figures with 2 page supplementa
Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits
Scalable quantum computing can become a reality with error correction,
provided coherent qubits can be constructed in large arrays. The key premise is
that physical errors can remain both small and sufficiently uncorrelated as
devices scale, so that logical error rates can be exponentially suppressed.
However, energetic impacts from cosmic rays and latent radioactivity violate
both of these assumptions. An impinging particle ionizes the substrate,
radiating high energy phonons that induce a burst of quasiparticles, destroying
qubit coherence throughout the device. High-energy radiation has been
identified as a source of error in pilot superconducting quantum devices, but
lacking a measurement technique able to resolve a single event in detail, the
effect on large scale algorithms and error correction in particular remains an
open question. Elucidating the physics involved requires operating large
numbers of qubits at the same rapid timescales as in error correction, exposing
the event's evolution in time and spread in space. Here, we directly observe
high-energy rays impacting a large-scale quantum processor. We introduce a
rapid space and time-multiplexed measurement method and identify large bursts
of quasiparticles that simultaneously and severely limit the energy coherence
of all qubits, causing chip-wide failure. We track the events from their
initial localised impact to high error rates across the chip. Our results
provide direct insights into the scale and dynamics of these damaging error
bursts in large-scale devices, and highlight the necessity of mitigation to
enable quantum computing to scale